Stochastic Vector Approximate Message Passing with applications to phase retrieval

Hajime Ueda, Shun Katakami, Masato Okada
{"title":"Stochastic Vector Approximate Message Passing with applications to phase retrieval","authors":"Hajime Ueda, Shun Katakami, Masato Okada","doi":"arxiv-2408.17102","DOIUrl":null,"url":null,"abstract":"Phase retrieval refers to the problem of recovering a high-dimensional vector\n$\\boldsymbol{x} \\in \\mathbb{C}^N$ from the magnitude of its linear transform\n$\\boldsymbol{z} = A \\boldsymbol{x}$, observed through a noisy channel. To\nimprove the ill-posed nature of the inverse problem, it is a common practice to\nobserve the magnitude of linear measurements $\\boldsymbol{z}^{(1)} = A^{(1)}\n\\boldsymbol{x},..., \\boldsymbol{z}^{(L)} = A^{(L)}\\boldsymbol{x}$ using\nmultiple sensing matrices $A^{(1)},..., A^{(L)}$, with ptychographic imaging\nbeing a remarkable example of such strategies. Inspired by existing algorithms\nfor ptychographic reconstruction, we introduce stochasticity to Vector\nApproximate Message Passing (VAMP), a computationally efficient algorithm\napplicable to a wide range of Bayesian inverse problems. By testing our\napproach in the setup of phase retrieval, we show the superior convergence\nspeed of the proposed algorithm.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Phase retrieval refers to the problem of recovering a high-dimensional vector $\boldsymbol{x} \in \mathbb{C}^N$ from the magnitude of its linear transform $\boldsymbol{z} = A \boldsymbol{x}$, observed through a noisy channel. To improve the ill-posed nature of the inverse problem, it is a common practice to observe the magnitude of linear measurements $\boldsymbol{z}^{(1)} = A^{(1)} \boldsymbol{x},..., \boldsymbol{z}^{(L)} = A^{(L)}\boldsymbol{x}$ using multiple sensing matrices $A^{(1)},..., A^{(L)}$, with ptychographic imaging being a remarkable example of such strategies. Inspired by existing algorithms for ptychographic reconstruction, we introduce stochasticity to Vector Approximate Message Passing (VAMP), a computationally efficient algorithm applicable to a wide range of Bayesian inverse problems. By testing our approach in the setup of phase retrieval, we show the superior convergence speed of the proposed algorithm.
随机向量近似信息传递与相位检索的应用
相位检索指的是从(mathbb{C}^N)中的高维向量(vector)的线性变换(linear transform)的大小中恢复高维向量(vector)的问题。\的线性变换$\boldsymbol{z} = A \boldsymbol{x}$的大小,并通过噪声信道进行观测。为了改善逆问题的无解性质,通常的做法是观察线性测量的大小 $\boldsymbol{z}^{(1)} = A^{(1)}\boldsymbol{x},..., \boldsymbol{z}^{(L)} = A^{(L)}\boldsymbol{x}$ 使用多个传感矩阵 $A^{(1)},..., A^{(L)}$,梯度成像就是这种策略的一个显著例子。受现有的阶梯图像重建算法的启发,我们在矢量近似信息传递(VAMP)中引入了随机性,这是一种适用于多种贝叶斯逆问题的高效计算算法。通过在相位检索设置中测试我们的方法,我们展示了所提出算法的卓越收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信