Gate mesa terminal with drain-field-plated β-Ga2O3 MOSFET with ultra-high power figure of merit

IF 1.5 Q2 ENGINEERING, MULTIDISCIPLINARY
Yunfei Zhang, Suzhen Luan, Xuepei Cheng
{"title":"Gate mesa terminal with drain-field-plated β-Ga2O3 MOSFET with ultra-high power figure of merit","authors":"Yunfei Zhang, Suzhen Luan, Xuepei Cheng","doi":"10.1088/2631-8695/ad6ff2","DOIUrl":null,"url":null,"abstract":"In this article, a novel gate mesa terminal (GMT) device structure incorporating a drain field plate is proposed. This design features mesa terminals with varying bevel angles positioned atop the gate. The objective is to enhance the breakdown voltage (V<sub>br</sub>) and reduce the on-resistance (R<sub>on</sub>) of the lateral <italic toggle=\"yes\">β</italic>-Ga<sub>2</sub>O<sub>3</sub> metal-oxide-semiconductor field-effect transistor (MOSFET). Through the implementation of the GMT structure, the peak electric field within the <italic toggle=\"yes\">β</italic>-Ga<sub>2</sub>O<sub>3</sub> MOSFET is redirected towards the passivation layer. This effectively mitigates the electric field in the epitaxial layer, thereby increasing V<sub>br</sub>. The optimal values for V<sub>br</sub>, specific on-resistance (R<sub>on,sp</sub>) and maximum transconductance (g<sub>m</sub>) across various GMT structures are 4827 V, 9.9 mΩ·cm<sup>2</sup> and 15.32 mS/mm, respectively. These metrics represent a 2.63-fold, 0.88-fold, and 1.25-fold improvement compared to the non-GMT structure. Additionally, when the doping concentration of epitaxial layer is 1 × 10<sup>16</sup> cm<sup>−3</sup>, the GMT achieves an enhanced threshold voltage of +0.26 V. By simulating different bevel angles, field plate parameters, epitaxial layer doping concentrations, and mesa thicknesses, an optimal power figure of merit (PFOM) of 1.914 GW cm<sup>−2</sup> is attained. This innovative design introduces a fresh concept for the development of the next generation of high voltage and high-power devices rated above 4 KV.","PeriodicalId":11753,"journal":{"name":"Engineering Research Express","volume":"51 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Research Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-8695/ad6ff2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a novel gate mesa terminal (GMT) device structure incorporating a drain field plate is proposed. This design features mesa terminals with varying bevel angles positioned atop the gate. The objective is to enhance the breakdown voltage (Vbr) and reduce the on-resistance (Ron) of the lateral β-Ga2O3 metal-oxide-semiconductor field-effect transistor (MOSFET). Through the implementation of the GMT structure, the peak electric field within the β-Ga2O3 MOSFET is redirected towards the passivation layer. This effectively mitigates the electric field in the epitaxial layer, thereby increasing Vbr. The optimal values for Vbr, specific on-resistance (Ron,sp) and maximum transconductance (gm) across various GMT structures are 4827 V, 9.9 mΩ·cm2 and 15.32 mS/mm, respectively. These metrics represent a 2.63-fold, 0.88-fold, and 1.25-fold improvement compared to the non-GMT structure. Additionally, when the doping concentration of epitaxial layer is 1 × 1016 cm−3, the GMT achieves an enhanced threshold voltage of +0.26 V. By simulating different bevel angles, field plate parameters, epitaxial layer doping concentrations, and mesa thicknesses, an optimal power figure of merit (PFOM) of 1.914 GW cm−2 is attained. This innovative design introduces a fresh concept for the development of the next generation of high voltage and high-power devices rated above 4 KV.
具有超高功率优越性的栅极网格端子与漏极电镀 β-Ga2O3 MOSFET
本文提出了一种包含漏磁场板的新型栅介子端子(GMT)器件结构。这种设计的特点是在栅极顶部设置了具有不同斜角的栅极。其目的是提高横向 β-Ga2O3 金属氧化物半导体场效应晶体管 (MOSFET) 的击穿电压 (Vbr) 并降低导通电阻 (Ron)。通过实施 GMT 结构,β-Ga2O3 MOSFET 内的峰值电场被重新定向到钝化层。这有效地减轻了外延层中的电场,从而提高了 Vbr。在各种 GMT 结构中,Vbr、比导通电阻 (Ron,sp) 和最大跨导 (gm) 的最佳值分别为 4827 V、9.9 mΩ-cm2 和 15.32 mS/mm。与非 GMT 结构相比,这些指标分别提高了 2.63 倍、0.88 倍和 1.25 倍。此外,当外延层的掺杂浓度为 1 × 1016 cm-3 时,GMT 的阈值电压提高到 +0.26 V。通过模拟不同的斜角、场板参数、外延层掺杂浓度和中子厚度,最佳功率系数 (PFOM) 达到 1.914 GW cm-2。这一创新设计为开发额定电压超过 4 KV 的下一代高压和大功率器件引入了全新理念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Research Express
Engineering Research Express Engineering-Engineering (all)
CiteScore
2.20
自引率
5.90%
发文量
192
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信