Single gate heterostructure dopingless TFET: a comprehensive sensitivity investigation with exposure to various chemical analytes

IF 1.5 Q2 ENGINEERING, MULTIDISCIPLINARY
Shwetapadma Panda, Sidhartha Dash
{"title":"Single gate heterostructure dopingless TFET: a comprehensive sensitivity investigation with exposure to various chemical analytes","authors":"Shwetapadma Panda, Sidhartha Dash","doi":"10.1088/2631-8695/ad6fee","DOIUrl":null,"url":null,"abstract":"This study proposes a new chemical sensor designed using a single gate heterostructure dopingless tunnel field effect transistor (SG-HS-DLT). Combining Si<sub>0.6</sub>Ge<sub>0.4</sub> in the source and HfO<sub>2</sub> as the gate dielectric improves the sensor’s drain current sensitivity. Many chemical analytes, including hexane (C<sub>6</sub>H<sub>14</sub>), methanol (CH<sub>3</sub>OH), isopropanol (Iso-C<sub>3</sub>H<sub>7</sub>OH), dichloromethane (CH<sub>2</sub>Cl<sub>2</sub>), and chloroform (CHCl<sub>3</sub>) have been considered during the investigation. The conducting polymer is used as the gate metal due to its compatibility with the electronic chemical sensor. Modifying the gate work function with exposure to chemical substances is employed to determine the sensitivity of the reported chemical sensor. The electrical performance of the sensor is examined using transfer characteristics, switching ratio, average SS, BTBT rate, threshold voltage, electron concentration, energy band, and potential. Correspondingly, the sensitivity investigation comprises drain current sensitivity (S<sub>Drain</sub>), current ratio sensitivity (S<sub>R</sub>), average SS sensitivity (S<sub>AvgSS</sub>), and threshold voltage sensitivity (S<sub>VT</sub>). Further, the sensitivity analysis is extended for various temperatures and mole fractions (x). The SG-HS-DLT chemical sensor displays a higher value of S<sub>Drain</sub> of 3.64 × 10<sup>5</sup>, S<sub>Avg.SS</sub> of 0.69444 for CHCl<sub>3</sub> at room temperature. This article extensively uses the Silvaco TCAD simulation software to investigate the proposed chemical sensor.","PeriodicalId":11753,"journal":{"name":"Engineering Research Express","volume":"15 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Research Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-8695/ad6fee","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a new chemical sensor designed using a single gate heterostructure dopingless tunnel field effect transistor (SG-HS-DLT). Combining Si0.6Ge0.4 in the source and HfO2 as the gate dielectric improves the sensor’s drain current sensitivity. Many chemical analytes, including hexane (C6H14), methanol (CH3OH), isopropanol (Iso-C3H7OH), dichloromethane (CH2Cl2), and chloroform (CHCl3) have been considered during the investigation. The conducting polymer is used as the gate metal due to its compatibility with the electronic chemical sensor. Modifying the gate work function with exposure to chemical substances is employed to determine the sensitivity of the reported chemical sensor. The electrical performance of the sensor is examined using transfer characteristics, switching ratio, average SS, BTBT rate, threshold voltage, electron concentration, energy band, and potential. Correspondingly, the sensitivity investigation comprises drain current sensitivity (SDrain), current ratio sensitivity (SR), average SS sensitivity (SAvgSS), and threshold voltage sensitivity (SVT). Further, the sensitivity analysis is extended for various temperatures and mole fractions (x). The SG-HS-DLT chemical sensor displays a higher value of SDrain of 3.64 × 105, SAvg.SS of 0.69444 for CHCl3 at room temperature. This article extensively uses the Silvaco TCAD simulation software to investigate the proposed chemical sensor.
单栅异质结构无掺杂 TFET:暴露于各种化学分析物的综合灵敏度调查
本研究提出了一种利用单栅异质结构无掺杂隧道场效应晶体管(SG-HS-DLT)设计的新型化学传感器。源极采用 Si0.6Ge0.4,栅极电介质采用 HfO2,提高了传感器的漏极电流灵敏度。研究中考虑了许多化学分析物,包括正己烷(C6H14)、甲醇(CH3OH)、异丙醇(Iso-C3H7OH)、二氯甲烷(CH2Cl2)和氯仿(CHCl3)。导电聚合物因其与电子化学传感器的兼容性而被用作栅极金属。通过改变栅极在化学物质中的工作函数来确定所报告的化学传感器的灵敏度。传感器的电气性能是通过传输特性、开关比、平均 SS、BTBT 速率、阈值电压、电子浓度、能带和电势来检验的。相应地,灵敏度调查包括漏极电流灵敏度(SDrain)、电流比灵敏度(SR)、平均 SS 灵敏度(SAvgSS)和阈值电压灵敏度(SVT)。此外,灵敏度分析还扩展到各种温度和分子分数 (x)。对于室温下的 CHCl3,SG-HS-DLT 化学传感器显示出更高的 SDrain 值(3.64 × 105)和 SAvg.SS 值(0.69444)。本文广泛使用 Silvaco TCAD 仿真软件来研究拟议的化学传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Research Express
Engineering Research Express Engineering-Engineering (all)
CiteScore
2.20
自引率
5.90%
发文量
192
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信