Parameter estimation of hidden Markov models: comparison of EM and quasi-Newton methods with a new hybrid algorithm

Sidonie FoulonCESP, NeuroDiderot, Thérèse TruongCESP, Anne-Louise LeuteneggerNeuroDiderot, Hervé PerdryCESP
{"title":"Parameter estimation of hidden Markov models: comparison of EM and quasi-Newton methods with a new hybrid algorithm","authors":"Sidonie FoulonCESP, NeuroDiderot, Thérèse TruongCESP, Anne-Louise LeuteneggerNeuroDiderot, Hervé PerdryCESP","doi":"arxiv-2409.02477","DOIUrl":null,"url":null,"abstract":"Hidden Markov Models (HMM) model a sequence of observations that are\ndependent on a hidden (or latent) state that follow a Markov chain. These\nmodels are widely used in diverse fields including ecology, speech recognition,\nand genetics.Parameter estimation in HMM is typically performed using the\nBaum-Welch algorithm, a special case of the Expectation-Maximisation (EM)\nalgorithm. While this method guarantee the convergence to a local maximum, its\nconvergence rates is usually slow.Alternative methods, such as the direct\nmaximisation of the likelihood using quasi-Newton methods (such as L-BFGS-B)\ncan offer faster convergence but can be more complicated to implement due to\nchallenges to deal with the presence of bounds on the space of parameters.We\npropose a novel hybrid algorithm, QNEM, that combines the Baum-Welch and the\nquasi-Newton algorithms. QNEM aims to leverage the strength of both algorithms\nby switching from one method to the other based on the convexity of the\nlikelihood function.We conducted a comparative analysis between QNEM, the\nBaum-Welch algorithm, an EM acceleration algorithm called SQUAREM (Varadhan,\n2008, Scand J Statist), and the L-BFGS-B quasi-Newton method by applying these\nalgorithms to four examples built on different models. We estimated the\nparameters of each model using the different algorithms and evaluated their\nperformances.Our results show that the best-performing algorithm depends on the\nmodel considered. QNEM performs well overall, always being faster or equivalent\nto L-BFGS-B. The Baum-Welch and SQUAREM algorithms are faster than the\nquasi-Newton and QNEM algorithms in certain scenarios with multiple optimum. In\nconclusion, QNEM offers a promising alternative to existing algorithms.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hidden Markov Models (HMM) model a sequence of observations that are dependent on a hidden (or latent) state that follow a Markov chain. These models are widely used in diverse fields including ecology, speech recognition, and genetics.Parameter estimation in HMM is typically performed using the Baum-Welch algorithm, a special case of the Expectation-Maximisation (EM) algorithm. While this method guarantee the convergence to a local maximum, its convergence rates is usually slow.Alternative methods, such as the direct maximisation of the likelihood using quasi-Newton methods (such as L-BFGS-B) can offer faster convergence but can be more complicated to implement due to challenges to deal with the presence of bounds on the space of parameters.We propose a novel hybrid algorithm, QNEM, that combines the Baum-Welch and the quasi-Newton algorithms. QNEM aims to leverage the strength of both algorithms by switching from one method to the other based on the convexity of the likelihood function.We conducted a comparative analysis between QNEM, the Baum-Welch algorithm, an EM acceleration algorithm called SQUAREM (Varadhan, 2008, Scand J Statist), and the L-BFGS-B quasi-Newton method by applying these algorithms to four examples built on different models. We estimated the parameters of each model using the different algorithms and evaluated their performances.Our results show that the best-performing algorithm depends on the model considered. QNEM performs well overall, always being faster or equivalent to L-BFGS-B. The Baum-Welch and SQUAREM algorithms are faster than the quasi-Newton and QNEM algorithms in certain scenarios with multiple optimum. In conclusion, QNEM offers a promising alternative to existing algorithms.
隐马尔可夫模型的参数估计:EM 和准牛顿方法与新混合算法的比较
隐马尔可夫模型(HMM)是对一连串观测值的建模,这些观测值依赖于马尔可夫链上的隐藏(或潜在)状态。这些模型被广泛应用于生态学、语音识别和遗传学等多个领域。HMM 的参数估计通常使用鲍姆-韦尔奇算法(Baum-Welch algorithm)进行,该算法是期望最大化算法(EM)的一个特例。其他方法,如使用准牛顿方法(如 L-BFGS-B)直接最大化似然,可以提供更快的收敛速度,但由于要处理参数空间上存在的边界问题,实现起来可能会更加复杂。我们提出了一种新型混合算法 QNEM,它结合了 Baum-Welch 算法和准牛顿算法。我们对 QNEM、鲍姆-韦尔奇算法、一种名为 SQUAREM 的 EM 加速算法(Varadhan,2008 年,Scand J Statist)和 L-BFGS-B 准牛顿方法进行了比较分析,将这些算法应用于四个基于不同模型的示例。结果表明,最佳算法取决于所考虑的模型。QNEM 总体表现良好,速度始终快于或等同于 L-BFGS-B。在某些有多个最优的情况下,Baum-Welch 算法和 SQUAREM 算法比准牛顿算法和 QNEM 算法更快。总之,QNEM 为现有算法提供了一种有前途的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信