Statistical Finite Elements via Interacting Particle Langevin Dynamics

Alex Glyn-Davies, Connor Duffin, Ieva Kazlauskaite, Mark Girolami, Ö. Deniz Akyildiz
{"title":"Statistical Finite Elements via Interacting Particle Langevin Dynamics","authors":"Alex Glyn-Davies, Connor Duffin, Ieva Kazlauskaite, Mark Girolami, Ö. Deniz Akyildiz","doi":"arxiv-2409.07101","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a class of interacting particle Langevin algorithms\nto solve inverse problems for partial differential equations (PDEs). In\nparticular, we leverage the statistical finite elements (statFEM) formulation\nto obtain a finite-dimensional latent variable statistical model where the\nparameter is that of the (discretised) forward map and the latent variable is\nthe statFEM solution of the PDE which is assumed to be partially observed. We\nthen adapt a recently proposed expectation-maximisation like scheme,\ninteracting particle Langevin algorithm (IPLA), for this problem and obtain a\njoint estimation procedure for the parameters and the latent variables. We\nconsider three main examples: (i) estimating the forcing for linear Poisson\nPDE, (ii) estimating the forcing for nonlinear Poisson PDE, and (iii)\nestimating diffusivity for linear Poisson PDE. We provide computational\ncomplexity estimates for forcing estimation in the linear case. We also provide\ncomprehensive numerical experiments and preconditioning strategies that\nsignificantly improve the performance, showing that the proposed class of\nmethods can be the choice for parameter inference in PDE models.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop a class of interacting particle Langevin algorithms to solve inverse problems for partial differential equations (PDEs). In particular, we leverage the statistical finite elements (statFEM) formulation to obtain a finite-dimensional latent variable statistical model where the parameter is that of the (discretised) forward map and the latent variable is the statFEM solution of the PDE which is assumed to be partially observed. We then adapt a recently proposed expectation-maximisation like scheme, interacting particle Langevin algorithm (IPLA), for this problem and obtain a joint estimation procedure for the parameters and the latent variables. We consider three main examples: (i) estimating the forcing for linear Poisson PDE, (ii) estimating the forcing for nonlinear Poisson PDE, and (iii) estimating diffusivity for linear Poisson PDE. We provide computational complexity estimates for forcing estimation in the linear case. We also provide comprehensive numerical experiments and preconditioning strategies that significantly improve the performance, showing that the proposed class of methods can be the choice for parameter inference in PDE models.
通过相互作用粒子朗格文动力学实现统计有限元
在本文中,我们开发了一类交互粒子朗文算法来解决偏微分方程(PDE)的逆问题。特别是,我们利用统计有限元(statFEM)公式获得了一个有限维的潜变量统计模型,其中参数是(离散化)前向映射的参数,潜变量是假设为部分观测的偏微分方程的 statFEM 解。针对这一问题,我们采用了最近提出的类似期望最大化的方案--交互粒子朗文算法(IPLA),并获得了参数和潜变量的联合估计程序。我们考虑了三个主要例子:(i) 估计线性泊松 PDE 的强迫;(ii) 估计非线性泊松 PDE 的强迫;(iii) 估计线性泊松 PDE 的扩散性。我们为线性情况下的强迫估计提供了计算复杂性估计。我们还提供了可显著提高性能的综合数值实验和预处理策略,表明所提出的方法可以作为 PDE 模型参数推断的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信