AI-assisted Automated Short Answer Grading of Handwritten University Level Mathematics Exams

Tianyi Liu, Julia Chatain, Laura Kobel-Keller, Gerd Kortemeyer, Thomas Willwacher, Mrinmaya Sachan
{"title":"AI-assisted Automated Short Answer Grading of Handwritten University Level Mathematics Exams","authors":"Tianyi Liu, Julia Chatain, Laura Kobel-Keller, Gerd Kortemeyer, Thomas Willwacher, Mrinmaya Sachan","doi":"arxiv-2408.11728","DOIUrl":null,"url":null,"abstract":"Effective and timely feedback in educational assessments is essential but\nlabor-intensive, especially for complex tasks. Recent developments in automated\nfeedback systems, ranging from deterministic response grading to the evaluation\nof semi-open and open-ended essays, have been facilitated by advances in\nmachine learning. The emergence of pre-trained Large Language Models, such as\nGPT-4, offers promising new opportunities for efficiently processing diverse\nresponse types with minimal customization. This study evaluates the\neffectiveness of a pre-trained GPT-4 model in grading semi-open handwritten\nresponses in a university-level mathematics exam. Our findings indicate that\nGPT-4 provides surprisingly reliable and cost-effective initial grading,\nsubject to subsequent human verification. Future research should focus on\nrefining grading rules and enhancing the extraction of handwritten responses to\nfurther leverage these technologies.","PeriodicalId":501462,"journal":{"name":"arXiv - MATH - History and Overview","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - History and Overview","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Effective and timely feedback in educational assessments is essential but labor-intensive, especially for complex tasks. Recent developments in automated feedback systems, ranging from deterministic response grading to the evaluation of semi-open and open-ended essays, have been facilitated by advances in machine learning. The emergence of pre-trained Large Language Models, such as GPT-4, offers promising new opportunities for efficiently processing diverse response types with minimal customization. This study evaluates the effectiveness of a pre-trained GPT-4 model in grading semi-open handwritten responses in a university-level mathematics exam. Our findings indicate that GPT-4 provides surprisingly reliable and cost-effective initial grading, subject to subsequent human verification. Future research should focus on refining grading rules and enhancing the extraction of handwritten responses to further leverage these technologies.
人工智能辅助大学数学考试手写简答题自动评分
在教育评估中,有效而及时的反馈是必不可少的,但这需要大量的人力,尤其是在复杂的任务中。机器学习技术的进步促进了自动反馈系统的最新发展,从确定性答卷评分到半开放式和开放式作文评价,不一而足。预训练大语言模型(如 GPT-4)的出现,为高效处理各种类型的答卷提供了新的机遇,只需进行最少的定制即可。本研究评估了预先训练好的 GPT-4 模型在大学数学考试中对半开放式手写答卷进行评分的效果。我们的研究结果表明,GPT-4 提供了令人惊讶的可靠和经济高效的初始评分,但还需要后续的人工验证。未来的研究应侧重于完善评分规则和加强手写答卷的提取,以进一步利用这些技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信