Invariants of almost embeddings of graphs in the plane: results and problems

E. Alkin, E. Bordacheva, A. Miroshnikov, O. Nikitenko, A. Skopenkov
{"title":"Invariants of almost embeddings of graphs in the plane: results and problems","authors":"E. Alkin, E. Bordacheva, A. Miroshnikov, O. Nikitenko, A. Skopenkov","doi":"arxiv-2408.06392","DOIUrl":null,"url":null,"abstract":"A graph drawing in the plane is called an almost embedding if images of any\ntwo non-adjacent simplices (i.e. vertices or edges) are disjoint. We introduce\ninteger invariants of almost embeddings: winding number, cyclic and triodic Wu\nnumbers. We construct almost embeddings realizing some values of these\ninvariants. We prove some relations between the invariants. We study values\nrealizable as invariants of some almost embedding, but not of any embedding. This paper is expository and is accessible to mathematicians not specialized\nin the area (and to students). However elementary, this paper is motivated by\nfrontline of research.","PeriodicalId":501462,"journal":{"name":"arXiv - MATH - History and Overview","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - History and Overview","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A graph drawing in the plane is called an almost embedding if images of any two non-adjacent simplices (i.e. vertices or edges) are disjoint. We introduce integer invariants of almost embeddings: winding number, cyclic and triodic Wu numbers. We construct almost embeddings realizing some values of these invariants. We prove some relations between the invariants. We study values realizable as invariants of some almost embedding, but not of any embedding. This paper is expository and is accessible to mathematicians not specialized in the area (and to students). However elementary, this paper is motivated by frontline of research.
平面图几乎嵌入的不变式:结果与问题
如果任意两个非相邻简图(即顶点或边)的图像是不相交的,那么在平面上绘制的图形称为近似嵌入。我们引入了近似嵌入的整数不变量:缠绕数、循环数和三odic Wunumbers。我们构建了实现这些不变式某些值的近似嵌入。我们证明了不变式之间的一些关系。我们研究了可作为某些几乎嵌入的不变式实现的值,而不是任何嵌入的不变式。本文是阐述性的,非本领域专业数学家(以及学生)都可以阅读。然而,本文的初衷是为了推动前沿研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信