Fang-Fang Du, Ling-Hui Li, Xue-Mei Ren, Ming Ma, Yang-Yang Wang, Wen-Yao Liu
{"title":"Heralded high-efficiency entanglement concentration of cluster states for photon systems with linear optics via time-delay effect","authors":"Fang-Fang Du, Ling-Hui Li, Xue-Mei Ren, Ming Ma, Yang-Yang Wang, Wen-Yao Liu","doi":"10.1088/1612-202x/ad6e6a","DOIUrl":null,"url":null,"abstract":"Entanglement concentration stands as a pivotal technique to safeguard against degraded fidelity in long-distance quantum communication. In this manuscript, propose ultra-efficient entanglement concentration protocols (ECPs) tailored for less-entangled two-photon cluster states and four-photon cluster states with two unknown parameters, leveraging simple linear optical elements and acute single-photon detectors. Additionally, ancillary photons, post-selection techniques, or photon-number-resolving detectors are unnecessary for complete identification of the parity-check measurement. By coordinating auxiliary time degrees of freedom and implementing multiple recycling conditions, the success of two ECPs can be heralded by detection signatures without compromising the incident qubits, thereby allowing their efficiencies to be close to 0.75, in principle. The combination of heralded detection and basic linear optical elements renders our practical ECPs accessible for experimental exploration with current technology.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad6e6a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Entanglement concentration stands as a pivotal technique to safeguard against degraded fidelity in long-distance quantum communication. In this manuscript, propose ultra-efficient entanglement concentration protocols (ECPs) tailored for less-entangled two-photon cluster states and four-photon cluster states with two unknown parameters, leveraging simple linear optical elements and acute single-photon detectors. Additionally, ancillary photons, post-selection techniques, or photon-number-resolving detectors are unnecessary for complete identification of the parity-check measurement. By coordinating auxiliary time degrees of freedom and implementing multiple recycling conditions, the success of two ECPs can be heralded by detection signatures without compromising the incident qubits, thereby allowing their efficiencies to be close to 0.75, in principle. The combination of heralded detection and basic linear optical elements renders our practical ECPs accessible for experimental exploration with current technology.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.