TFCP2L1 drives stemness and enhances their resistance to Sorafenib treatment by modulating the NANOG/STAT3 pathway in hepatocellular carcinoma

IF 5.9 2区 医学 Q1 ONCOLOGY
Dongbo Qiu, Tiantian Wang, Yi Xiong, Kun Li, Xiusheng Qiu, Yuan Feng, Qinghai Lian, Yunfei Qin, Kunpeng Liu, Qi Zhang, Changchang Jia
{"title":"TFCP2L1 drives stemness and enhances their resistance to Sorafenib treatment by modulating the NANOG/STAT3 pathway in hepatocellular carcinoma","authors":"Dongbo Qiu, Tiantian Wang, Yi Xiong, Kun Li, Xiusheng Qiu, Yuan Feng, Qinghai Lian, Yunfei Qin, Kunpeng Liu, Qi Zhang, Changchang Jia","doi":"10.1038/s41389-024-00534-1","DOIUrl":null,"url":null,"abstract":"<p>Hepatocellular carcinoma (HCC) is a prevalent and aggressive malignancy associated with high risks of recurrence and metastasis. Liver cancer stem cells (CSCs) are increasingly recognized as pivotal drivers of these processes. In our previous research, we demonstrated the involvement of TFCP2L1 in maintaining the pluripotency of embryonic stem cells. However, its relevance to liver CSCs remains unexplored. In this study, we report an inverse correlation between TFCP2L1 protein levels in HCC tissue and patient outcomes. The knockdown of TFCP2L1 significantly reduced HCC cell proliferation, invasion, metastasis, clonal formation, and sphere-forming capacity, while its overexpression enhanced these functions. In addition, experiments using a nude mouse model confirmed TFCP2L1’s essential role in liver CSCs’ function and tumorigenic potential. Mechanistically, we showed that TFCP2L1 promotes the stemness of CSCs by upregulating NANOG, which subsequently activates the JAK/STAT3 pathway, thereby contributing to HCC pathogenesis. Importantly, we identified a specific small molecule targeting TFCP2L1’s active domain, which, in combination with Sorafenib, sensitizes hepatoma cells to treatment. Together, these findings underscore TFCP2L1’s pathological significance in HCC progression, supporting its potential as a prognostic biomarker and therapeutic target in this disease.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41389-024-00534-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hepatocellular carcinoma (HCC) is a prevalent and aggressive malignancy associated with high risks of recurrence and metastasis. Liver cancer stem cells (CSCs) are increasingly recognized as pivotal drivers of these processes. In our previous research, we demonstrated the involvement of TFCP2L1 in maintaining the pluripotency of embryonic stem cells. However, its relevance to liver CSCs remains unexplored. In this study, we report an inverse correlation between TFCP2L1 protein levels in HCC tissue and patient outcomes. The knockdown of TFCP2L1 significantly reduced HCC cell proliferation, invasion, metastasis, clonal formation, and sphere-forming capacity, while its overexpression enhanced these functions. In addition, experiments using a nude mouse model confirmed TFCP2L1’s essential role in liver CSCs’ function and tumorigenic potential. Mechanistically, we showed that TFCP2L1 promotes the stemness of CSCs by upregulating NANOG, which subsequently activates the JAK/STAT3 pathway, thereby contributing to HCC pathogenesis. Importantly, we identified a specific small molecule targeting TFCP2L1’s active domain, which, in combination with Sorafenib, sensitizes hepatoma cells to treatment. Together, these findings underscore TFCP2L1’s pathological significance in HCC progression, supporting its potential as a prognostic biomarker and therapeutic target in this disease.

Abstract Image

TFCP2L1通过调节肝细胞癌中的NANOG/STAT3通路驱动干性并增强其对索拉非尼治疗的耐受性
肝细胞癌(HCC)是一种常见的侵袭性恶性肿瘤,复发和转移的风险很高。肝癌干细胞(CSCs)越来越被认为是这些过程的关键驱动因素。在我们之前的研究中,我们证实了TFCP2L1参与维持胚胎干细胞的多能性。然而,它与肝脏干细胞的相关性仍未得到探讨。在本研究中,我们报告了HCC组织中TFCP2L1蛋白水平与患者预后之间的反相关性。敲除 TFCP2L1 能显著减少 HCC 细胞的增殖、侵袭、转移、克隆形成和球形成能力,而过表达则能增强这些功能。此外,利用裸鼠模型进行的实验证实了 TFCP2L1 在肝脏 CSCs 功能和致瘤潜能中的重要作用。从机理上讲,我们发现TFCP2L1通过上调NANOG促进CSCs的干性,进而激活JAK/STAT3通路,从而导致HCC发病。重要的是,我们发现了一种靶向TFCP2L1活性结构域的特异性小分子,它与索拉非尼联用可使肝癌细胞对治疗敏感。这些发现共同强调了TFCP2L1在HCC进展中的病理意义,支持其作为该疾病预后生物标志物和治疗靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Oncogenesis
Oncogenesis ONCOLOGY-
CiteScore
11.90
自引率
0.00%
发文量
70
审稿时长
26 weeks
期刊介绍: Oncogenesis is a peer-reviewed open access online journal that publishes full-length papers, reviews, and short communications exploring the molecular basis of cancer and related phenomena. It seeks to promote diverse and integrated areas of molecular biology, cell biology, oncology, and genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信