RNA–DNA hybrids on protein coding genes are stabilized by loss of RNase H and are associated with DNA damages during S-phase in fission yeast

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tomoko Sagi, Daichi Sadato, Kazuto Takayasu, Hiroyuki Sasanuma, Yutaka Kanoh, Hisao Masai
{"title":"RNA–DNA hybrids on protein coding genes are stabilized by loss of RNase H and are associated with DNA damages during S-phase in fission yeast","authors":"Tomoko Sagi,&nbsp;Daichi Sadato,&nbsp;Kazuto Takayasu,&nbsp;Hiroyuki Sasanuma,&nbsp;Yutaka Kanoh,&nbsp;Hisao Masai","doi":"10.1111/gtc.13157","DOIUrl":null,"url":null,"abstract":"<p>RNA–DNA hybrid is a part of the R-loop which is an important non-standard nucleic acid structure. RNA–DNA hybrid/R-loop causes genomic instability by inducing DNA damages or inhibiting DNA replication. It also plays biologically important roles in regulation of transcription, replication, recombination and repair. Here, we have employed catalytically inactive human RNase H1 mutant (D145N) to visualize RNA–DNA hybrids and map their genomic locations in fission yeast cells. The RNA–DNA hybrids appear as multiple nuclear foci in <i>rnh1∆rnh201∆</i> cells lacking cellular RNase H activity, but not in the wild-type. The majority of RNA–DNA hybrid loci are detected at the protein coding regions and tRNA. In <i>rnh1∆rnh201∆</i> cells, cells with multiple Rad52 foci increase during S-phase and about 20% of the RNA–DNA hybrids overlap with Rad52 loci. During S-phase, more robust association of Rad52 with RNA–DNA hybrids was observed in the protein coding region than in M-phase. These results suggest that persistent RNA–DNA hybrids in the protein coding region in <i>rnh1∆rnh201∆</i> cells generate DNA damages during S-phase, potentially through collision with DNA replication forks.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13157","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

RNA–DNA hybrid is a part of the R-loop which is an important non-standard nucleic acid structure. RNA–DNA hybrid/R-loop causes genomic instability by inducing DNA damages or inhibiting DNA replication. It also plays biologically important roles in regulation of transcription, replication, recombination and repair. Here, we have employed catalytically inactive human RNase H1 mutant (D145N) to visualize RNA–DNA hybrids and map their genomic locations in fission yeast cells. The RNA–DNA hybrids appear as multiple nuclear foci in rnh1∆rnh201∆ cells lacking cellular RNase H activity, but not in the wild-type. The majority of RNA–DNA hybrid loci are detected at the protein coding regions and tRNA. In rnh1∆rnh201∆ cells, cells with multiple Rad52 foci increase during S-phase and about 20% of the RNA–DNA hybrids overlap with Rad52 loci. During S-phase, more robust association of Rad52 with RNA–DNA hybrids was observed in the protein coding region than in M-phase. These results suggest that persistent RNA–DNA hybrids in the protein coding region in rnh1∆rnh201∆ cells generate DNA damages during S-phase, potentially through collision with DNA replication forks.

蛋白质编码基因上的 RNA-DNA 杂交因 RNase H 的缺失而稳定,并与裂殖酵母 S 期的 DNA 损伤有关
RNA-DNA 杂交是 R 环的一部分,而 R 环是一种重要的非标准核酸结构。RNA-DNA 杂交/R-环通过诱导 DNA 损伤或抑制 DNA 复制而导致基因组不稳定。它在转录、复制、重组和修复的调控中也发挥着重要的生物学作用。在这里,我们利用催化不活跃的人类 RNase H1 突变体(D145N)来观察裂殖酵母细胞中的 RNA-DNA 杂交并绘制其基因组位置图。在缺乏细胞 RNase H 活性的 rnh1∆rnh201∆ 细胞中,RNA-DNA 杂交表现为多个核病灶,而在野生型细胞中则没有。大多数 RNA-DNA 杂交位点都是在蛋白质编码区和 tRNA 上检测到的。在 rnh1∆rnh201∆ 细胞中,具有多个 Rad52 病灶的细胞在 S 期增加,约 20% 的 RNA-DNA 杂交位点与 Rad52 位点重叠。在 S 期,与 M 期相比,在蛋白质编码区观察到的 Rad52 与 RNA-DNA 杂交的关联更强。这些结果表明,rnh1∆rnh201∆细胞蛋白质编码区中持续存在的RNA-DNA杂交在S期可能通过与DNA复制叉碰撞而产生DNA损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信