{"title":"RBFNN-Based Ultra-Wideband Super-Miniaturized $$4\\times 4$$ Highly-Isolated MIMO Antenna for 5G mm-Wave Wireless Communications","authors":"Lahcen Sellak, Asma Khabba, Samira Chabaa, Saida Ibnyaich, Abdelouhab Zeroual, Atmane Baddou","doi":"10.1007/s11277-024-11548-8","DOIUrl":null,"url":null,"abstract":"<p>As the demand for high-speed communication in 5G increases, this article presents a development breakthrough in millimeter-wave spectrum solutions. The focus is on designing an ultra-wideband (UWB) circular patch antenna for 5G millimeter-wave applications. To address the problem of limited bandwidth and efficiency in existing designs, a UWB antenna operating in the 20–45 GHz range with a compact form factor of <span>\\(4 \\times 4.8 \\times 0.508 \\,\\,{\\hbox {mm}}^{3}\\)</span> has been developed. A radial basis function neural network (RBFNN) was employed to analyze and optimize the antenna’s bandwidth characteristics. The resulting antenna exhibits a wide bandwidth of 25 GHz, a gain of 5.75 dB, and an impressive efficiency of 99%. To extend the capabilities of the design, a <span>\\(4 \\times 4\\)</span> MIMO antenna system was developed, incorporating four copies of the proposed UWB single antenna, achieving an extended bandwidth of 25 GHz. The MIMO system, with dimensions of <span>\\(17.5 \\times 17.5 \\times 0.508\\,\\,{\\hbox {mm}}^{3}\\)</span>, demonstrates excellent performance with isolation exceeding 30 dB, a gain of 6 dB, and high efficiency. Rigorous measurements validate the designs, affirming their practical viability for future 5G mmWave applications. In conclusion, the proposed UWB antenna and MIMO system offer significant advancements in 5G mmWave communication, providing high performance in bandwidth, gain, and efficiency, supported by comprehensive simulations and measurements.</p>","PeriodicalId":23827,"journal":{"name":"Wireless Personal Communications","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Personal Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11277-024-11548-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
As the demand for high-speed communication in 5G increases, this article presents a development breakthrough in millimeter-wave spectrum solutions. The focus is on designing an ultra-wideband (UWB) circular patch antenna for 5G millimeter-wave applications. To address the problem of limited bandwidth and efficiency in existing designs, a UWB antenna operating in the 20–45 GHz range with a compact form factor of \(4 \times 4.8 \times 0.508 \,\,{\hbox {mm}}^{3}\) has been developed. A radial basis function neural network (RBFNN) was employed to analyze and optimize the antenna’s bandwidth characteristics. The resulting antenna exhibits a wide bandwidth of 25 GHz, a gain of 5.75 dB, and an impressive efficiency of 99%. To extend the capabilities of the design, a \(4 \times 4\) MIMO antenna system was developed, incorporating four copies of the proposed UWB single antenna, achieving an extended bandwidth of 25 GHz. The MIMO system, with dimensions of \(17.5 \times 17.5 \times 0.508\,\,{\hbox {mm}}^{3}\), demonstrates excellent performance with isolation exceeding 30 dB, a gain of 6 dB, and high efficiency. Rigorous measurements validate the designs, affirming their practical viability for future 5G mmWave applications. In conclusion, the proposed UWB antenna and MIMO system offer significant advancements in 5G mmWave communication, providing high performance in bandwidth, gain, and efficiency, supported by comprehensive simulations and measurements.
期刊介绍:
The Journal on Mobile Communication and Computing ...
Publishes tutorial, survey, and original research papers addressing mobile communications and computing;
Investigates theoretical, engineering, and experimental aspects of radio communications, voice, data, images, and multimedia;
Explores propagation, system models, speech and image coding, multiple access techniques, protocols, performance evaluation, radio local area networks, and networking and architectures, etc.;
98% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again.
Wireless Personal Communications is an archival, peer reviewed, scientific and technical journal addressing mobile communications and computing. It investigates theoretical, engineering, and experimental aspects of radio communications, voice, data, images, and multimedia. A partial list of topics included in the journal is: propagation, system models, speech and image coding, multiple access techniques, protocols performance evaluation, radio local area networks, and networking and architectures.
In addition to the above mentioned areas, the journal also accepts papers that deal with interdisciplinary aspects of wireless communications along with: big data and analytics, business and economy, society, and the environment.
The journal features five principal types of papers: full technical papers, short papers, technical aspects of policy and standardization, letters offering new research thoughts and experimental ideas, and invited papers on important and emerging topics authored by renowned experts.