{"title":"Performance Evaluation of GeoAI-Based Approach for Path Loss Prediction in Cellular Communication Networks","authors":"Guzide Miray Perihanoglu, Himmet Karaman","doi":"10.1007/s11277-024-11554-w","DOIUrl":null,"url":null,"abstract":"<p>Accurate signal path loss models for predictions are crucial in current cellular communication networks. Recently, numerous path loss estimation methods have been presented to improve the efficiency of networks. However, most of these existing models do not include spatial data such as land use/land cover, terrain elevation, building height, and the effect of topography. To address this issue, this study proposes a GeoAI-based technique for path loss estimation in cellular communication networks, addressing existing models’ lack of spatial data integration. Support Vector Regression, K-Nearest Neighbor, Random Forest, and multi-layer perceptron (MLP) artificial neural network models are evaluated using field measurements in an urban, suburban area in Van, Turkey, across various frequencies. Among the models, MLP with three hidden layers, nine input variables, hyperbolic tangent activation function, and Adam optimization method performs best. At 900 MHz, MLP has been observed with MSE, RMSE, MAE, and R values of 0.22 dB, 0.47 dB, 0.46 dB, and 0.99 dB, respectively. Lastly, a comparison of the developed model to the Free space, COST 231, Ericsson, and SUI models revealed that the GeoAI-based path loss models outperformed the empirical models regarding prediction accuracy and generalization. This study underscores the significance of integrating spatial data into path loss prediction, particularly in diverse urban and suburban environments, for optimizing cellular communication networks.</p>","PeriodicalId":23827,"journal":{"name":"Wireless Personal Communications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Personal Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11277-024-11554-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate signal path loss models for predictions are crucial in current cellular communication networks. Recently, numerous path loss estimation methods have been presented to improve the efficiency of networks. However, most of these existing models do not include spatial data such as land use/land cover, terrain elevation, building height, and the effect of topography. To address this issue, this study proposes a GeoAI-based technique for path loss estimation in cellular communication networks, addressing existing models’ lack of spatial data integration. Support Vector Regression, K-Nearest Neighbor, Random Forest, and multi-layer perceptron (MLP) artificial neural network models are evaluated using field measurements in an urban, suburban area in Van, Turkey, across various frequencies. Among the models, MLP with three hidden layers, nine input variables, hyperbolic tangent activation function, and Adam optimization method performs best. At 900 MHz, MLP has been observed with MSE, RMSE, MAE, and R values of 0.22 dB, 0.47 dB, 0.46 dB, and 0.99 dB, respectively. Lastly, a comparison of the developed model to the Free space, COST 231, Ericsson, and SUI models revealed that the GeoAI-based path loss models outperformed the empirical models regarding prediction accuracy and generalization. This study underscores the significance of integrating spatial data into path loss prediction, particularly in diverse urban and suburban environments, for optimizing cellular communication networks.
期刊介绍:
The Journal on Mobile Communication and Computing ...
Publishes tutorial, survey, and original research papers addressing mobile communications and computing;
Investigates theoretical, engineering, and experimental aspects of radio communications, voice, data, images, and multimedia;
Explores propagation, system models, speech and image coding, multiple access techniques, protocols, performance evaluation, radio local area networks, and networking and architectures, etc.;
98% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again.
Wireless Personal Communications is an archival, peer reviewed, scientific and technical journal addressing mobile communications and computing. It investigates theoretical, engineering, and experimental aspects of radio communications, voice, data, images, and multimedia. A partial list of topics included in the journal is: propagation, system models, speech and image coding, multiple access techniques, protocols performance evaluation, radio local area networks, and networking and architectures.
In addition to the above mentioned areas, the journal also accepts papers that deal with interdisciplinary aspects of wireless communications along with: big data and analytics, business and economy, society, and the environment.
The journal features five principal types of papers: full technical papers, short papers, technical aspects of policy and standardization, letters offering new research thoughts and experimental ideas, and invited papers on important and emerging topics authored by renowned experts.