P Ramya Priya, K S Deepak, Satish Kumar Dubey, Sanket Goel
{"title":"Nucleic acid purification through nanoarchitectonics: magnetic bead integration with microfluidic chip technology","authors":"P Ramya Priya, K S Deepak, Satish Kumar Dubey, Sanket Goel","doi":"10.1088/1361-6439/ad6f1d","DOIUrl":null,"url":null,"abstract":"Purified DNA and Polymerase Chain Reaction (PCR) are crucial parts of molecular biology techniques in various fields such as genomics, forensics, and diagnostics. The proposed microfluidic device is used to perform several steps like the adsorption of DNA present in processed PCR onto bare magnetic beads, cleaning of contaminants with ethanol-diluted buffer reagent, and eluting the adsorbed DNA in an elution buffer, which is further used for downstream application. The entire sample purification is accomplished in about 25 min. A comparative analysis is conducted using a commercially available DNA purification kit. By employing the suggested microfluidic chip alongside the commercial kit, a commercial spectrophotometer is utilized to measure the purity. This is done by obtaining the A260/A280 ratio, which allows for the assessment of both the quantity and purity of the extracted DNA. The A260/A280 ratios for the spin column-based, magnetic stand-based, and microfluidic chip- based tests were 1.86, 1.98, and 1.74, respectively. The analysis of the eluted DNA findings indicated that the quality was suitable for future PCR amplification. Additionally, this microchip-based device has the potential to be utilized as a bedside device for DNA purification in point of care applications, with a purification time of 25 min.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":"23 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/ad6f1d","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Purified DNA and Polymerase Chain Reaction (PCR) are crucial parts of molecular biology techniques in various fields such as genomics, forensics, and diagnostics. The proposed microfluidic device is used to perform several steps like the adsorption of DNA present in processed PCR onto bare magnetic beads, cleaning of contaminants with ethanol-diluted buffer reagent, and eluting the adsorbed DNA in an elution buffer, which is further used for downstream application. The entire sample purification is accomplished in about 25 min. A comparative analysis is conducted using a commercially available DNA purification kit. By employing the suggested microfluidic chip alongside the commercial kit, a commercial spectrophotometer is utilized to measure the purity. This is done by obtaining the A260/A280 ratio, which allows for the assessment of both the quantity and purity of the extracted DNA. The A260/A280 ratios for the spin column-based, magnetic stand-based, and microfluidic chip- based tests were 1.86, 1.98, and 1.74, respectively. The analysis of the eluted DNA findings indicated that the quality was suitable for future PCR amplification. Additionally, this microchip-based device has the potential to be utilized as a bedside device for DNA purification in point of care applications, with a purification time of 25 min.
纯化 DNA 和聚合酶链式反应(PCR)是基因组学、法医学和诊断学等各个领域分子生物学技术的重要组成部分。拟议的微流体设备用于执行几个步骤,如将处理过的 PCR 中的 DNA 吸附到裸磁珠上,用乙醇稀释的缓冲试剂清除杂质,将吸附的 DNA 在洗脱缓冲液中洗脱,洗脱缓冲液将进一步用于下游应用。整个样品纯化过程大约需要 25 分钟。我们使用市售的 DNA 纯化试剂盒进行了对比分析。在使用建议的微流控芯片和商用试剂盒的同时,还使用了商用分光光度计来测量纯度。通过获得 A260/A280 比率,可以评估提取 DNA 的数量和纯度。旋柱式、磁力架式和微流控芯片式测试的 A260/A280 比率分别为 1.86、1.98 和 1.74。对洗脱 DNA 的分析结果表明,其质量适于今后的 PCR 扩增。此外,这种基于微芯片的设备还可用作床旁设备,在护理点应用中进行 DNA 纯化,纯化时间为 25 分钟。
期刊介绍:
Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data.
The journal is focussed on all aspects of:
-nano- and micro- mechanical systems
-nano- and micro- electomechanical systems
-nano- and micro- electrical and mechatronic systems
-nano- and micro- engineering
-nano- and micro- scale science
Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering.
Below are some examples of the topics that are included within the scope of the journal:
-MEMS and NEMS:
Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc.
-Fabrication techniques and manufacturing:
Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing.
-Packaging and Integration technologies.
-Materials, testing, and reliability.
-Micro- and nano-fluidics:
Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip.
-Lab-on-a-chip and micro- and nano-total analysis systems.
-Biomedical systems and devices:
Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces.
-Energy and power:
Including power MEMS/NEMS, energy harvesters, actuators, microbatteries.
-Electronics:
Including flexible electronics, wearable electronics, interface electronics.
-Optical systems.
-Robotics.