Gang Wang, Changhua You, Liu Yang, Daoyin Liu, Huanhuan Zeng, Ning Xue, Lei Yao
{"title":"A heterogenous integrated neural recording system with elastocapillary self-assembled Au-PDMS-PEG neural probe and customized ASIC","authors":"Gang Wang, Changhua You, Liu Yang, Daoyin Liu, Huanhuan Zeng, Ning Xue, Lei Yao","doi":"10.1088/1361-6439/ad6f1c","DOIUrl":null,"url":null,"abstract":"This study presents the design and implementation of a heterogenous integrated neural recording system consisting of a flexible Au-PDMS-PEG probe and customized complementary metal oxide semiconductor (CMOS) application-specific integrated circuit (ASIC) in a standard 0.18 <italic toggle=\"yes\">μ</italic>m process. The flexible Au-PDMS-PEG probe was prepared by an elastocapillary self-assembled process, achieving an electrode impedance of 250 kΩ (@1 kHz). The customized CMOS ASIC contains 36 modular digital pixels (MDP). It achieves 5.69 <italic toggle=\"yes\">μ</italic>V<sub>rms</sub> input referred noise, 10.29 effective number of bits, 49.5 <italic toggle=\"yes\">μ</italic>W power consumption, and 0.092 mm<sup>2</sup> area for a single MDP unit. Spontaneous spikes were also recorded in the mouse cortex, with a peak-to-peak amplitude of 389.2 <italic toggle=\"yes\">μ</italic>V<sub>PP</sub> and a signal-to-noise ratio of 19.36. Benchtop and <italic toggle=\"yes\">in-vivo</italic> experiments were conducted to validate the functionality and performance of the proposed neural recording system.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":"7 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/ad6f1c","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the design and implementation of a heterogenous integrated neural recording system consisting of a flexible Au-PDMS-PEG probe and customized complementary metal oxide semiconductor (CMOS) application-specific integrated circuit (ASIC) in a standard 0.18 μm process. The flexible Au-PDMS-PEG probe was prepared by an elastocapillary self-assembled process, achieving an electrode impedance of 250 kΩ (@1 kHz). The customized CMOS ASIC contains 36 modular digital pixels (MDP). It achieves 5.69 μVrms input referred noise, 10.29 effective number of bits, 49.5 μW power consumption, and 0.092 mm2 area for a single MDP unit. Spontaneous spikes were also recorded in the mouse cortex, with a peak-to-peak amplitude of 389.2 μVPP and a signal-to-noise ratio of 19.36. Benchtop and in-vivo experiments were conducted to validate the functionality and performance of the proposed neural recording system.
期刊介绍:
Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data.
The journal is focussed on all aspects of:
-nano- and micro- mechanical systems
-nano- and micro- electomechanical systems
-nano- and micro- electrical and mechatronic systems
-nano- and micro- engineering
-nano- and micro- scale science
Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering.
Below are some examples of the topics that are included within the scope of the journal:
-MEMS and NEMS:
Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc.
-Fabrication techniques and manufacturing:
Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing.
-Packaging and Integration technologies.
-Materials, testing, and reliability.
-Micro- and nano-fluidics:
Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip.
-Lab-on-a-chip and micro- and nano-total analysis systems.
-Biomedical systems and devices:
Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces.
-Energy and power:
Including power MEMS/NEMS, energy harvesters, actuators, microbatteries.
-Electronics:
Including flexible electronics, wearable electronics, interface electronics.
-Optical systems.
-Robotics.