Ilja Kröker, Tim Brünnette, Nils Wildt, Maria Fernanda Morales Oreamuno, Rebecca Kohlhaas, Sergey Oladyshkin, Wolfgang Nowak
{"title":"Bayesian³ Active learning for regularized arbitrary multi-element polynomial chaos using information theory","authors":"Ilja Kröker, Tim Brünnette, Nils Wildt, Maria Fernanda Morales Oreamuno, Rebecca Kohlhaas, Sergey Oladyshkin, Wolfgang Nowak","doi":"10.1615/int.j.uncertaintyquantification.2024052675","DOIUrl":null,"url":null,"abstract":"Machine learning, surrogate modeling, and uncertainty quantification pose challenges in data-poor applications that arise due to limited availability of measurement data or with computationally expensive models. Specialized models, derived from Gaussian process emulators (GPE) or polynomial chaos expansions (PCE), are often used when only limited amounts of training points are available. The PCE (or its data-driven version, the arbitrary polynomial chaos) is based on a global representation informed by the distributions of model parameters, whereas GPEs rely on a local kernel and additionally assess the uncertainty of the surrogate itself. Oscillation-mitigating localizations of the PCE result in increased degrees of freedom (DoF), requiring more training samples. As applications such as Bayesian inference (BI) require highly accurate surrogates, even specialized models like PCE or GPE require a substantial amount of training data. Bayesian³ active learning (B³AL) on GPEs, based on information theory (IT), can reduce the necessary number of training samples for BI. IT-based ideas for B³AL are not yet directly transferable to the PCE family, as this family lacks awareness of surrogate uncertainty by design. In the present work, we introduce a Bayesian regularized version of localized arbitrary polynomial chaos to build surrogate models. Equipped with Gaussian emulator properties, our fully adaptive framework is enhanced with B³AL methods designed to achieve reliable surrogate models for BI while efficiently selecting training samples via IT. The effectiveness of the proposed methodology is demonstrated by comprehensive evaluations on several numerical examples.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2024052675","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning, surrogate modeling, and uncertainty quantification pose challenges in data-poor applications that arise due to limited availability of measurement data or with computationally expensive models. Specialized models, derived from Gaussian process emulators (GPE) or polynomial chaos expansions (PCE), are often used when only limited amounts of training points are available. The PCE (or its data-driven version, the arbitrary polynomial chaos) is based on a global representation informed by the distributions of model parameters, whereas GPEs rely on a local kernel and additionally assess the uncertainty of the surrogate itself. Oscillation-mitigating localizations of the PCE result in increased degrees of freedom (DoF), requiring more training samples. As applications such as Bayesian inference (BI) require highly accurate surrogates, even specialized models like PCE or GPE require a substantial amount of training data. Bayesian³ active learning (B³AL) on GPEs, based on information theory (IT), can reduce the necessary number of training samples for BI. IT-based ideas for B³AL are not yet directly transferable to the PCE family, as this family lacks awareness of surrogate uncertainty by design. In the present work, we introduce a Bayesian regularized version of localized arbitrary polynomial chaos to build surrogate models. Equipped with Gaussian emulator properties, our fully adaptive framework is enhanced with B³AL methods designed to achieve reliable surrogate models for BI while efficiently selecting training samples via IT. The effectiveness of the proposed methodology is demonstrated by comprehensive evaluations on several numerical examples.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.