Ilja Kröker, Tim Brünnette, Nils Wildt, Maria Fernanda Morales Oreamuno, Rebecca Kohlhaas, Sergey Oladyshkin, Wolfgang Nowak
{"title":"Bayesian³ Active learning for regularized arbitrary multi-element polynomial chaos using information theory","authors":"Ilja Kröker, Tim Brünnette, Nils Wildt, Maria Fernanda Morales Oreamuno, Rebecca Kohlhaas, Sergey Oladyshkin, Wolfgang Nowak","doi":"10.1615/int.j.uncertaintyquantification.2024052675","DOIUrl":null,"url":null,"abstract":"Machine learning, surrogate modeling, and uncertainty quantification pose challenges in data-poor applications that arise due to limited availability of measurement data or with computationally expensive models. Specialized models, derived from Gaussian process emulators (GPE) or polynomial chaos expansions (PCE), are often used when only limited amounts of training points are available. The PCE (or its data-driven version, the arbitrary polynomial chaos) is based on a global representation informed by the distributions of model parameters, whereas GPEs rely on a local kernel and additionally assess the uncertainty of the surrogate itself. Oscillation-mitigating localizations of the PCE result in increased degrees of freedom (DoF), requiring more training samples. As applications such as Bayesian inference (BI) require highly accurate surrogates, even specialized models like PCE or GPE require a substantial amount of training data. Bayesian³ active learning (B³AL) on GPEs, based on information theory (IT), can reduce the necessary number of training samples for BI. IT-based ideas for B³AL are not yet directly transferable to the PCE family, as this family lacks awareness of surrogate uncertainty by design. In the present work, we introduce a Bayesian regularized version of localized arbitrary polynomial chaos to build surrogate models. Equipped with Gaussian emulator properties, our fully adaptive framework is enhanced with B³AL methods designed to achieve reliable surrogate models for BI while efficiently selecting training samples via IT. The effectiveness of the proposed methodology is demonstrated by comprehensive evaluations on several numerical examples.","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"20 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2024052675","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning, surrogate modeling, and uncertainty quantification pose challenges in data-poor applications that arise due to limited availability of measurement data or with computationally expensive models. Specialized models, derived from Gaussian process emulators (GPE) or polynomial chaos expansions (PCE), are often used when only limited amounts of training points are available. The PCE (or its data-driven version, the arbitrary polynomial chaos) is based on a global representation informed by the distributions of model parameters, whereas GPEs rely on a local kernel and additionally assess the uncertainty of the surrogate itself. Oscillation-mitigating localizations of the PCE result in increased degrees of freedom (DoF), requiring more training samples. As applications such as Bayesian inference (BI) require highly accurate surrogates, even specialized models like PCE or GPE require a substantial amount of training data. Bayesian³ active learning (B³AL) on GPEs, based on information theory (IT), can reduce the necessary number of training samples for BI. IT-based ideas for B³AL are not yet directly transferable to the PCE family, as this family lacks awareness of surrogate uncertainty by design. In the present work, we introduce a Bayesian regularized version of localized arbitrary polynomial chaos to build surrogate models. Equipped with Gaussian emulator properties, our fully adaptive framework is enhanced with B³AL methods designed to achieve reliable surrogate models for BI while efficiently selecting training samples via IT. The effectiveness of the proposed methodology is demonstrated by comprehensive evaluations on several numerical examples.
期刊介绍:
The International Journal for Uncertainty Quantification disseminates information of permanent interest in the areas of analysis, modeling, design and control of complex systems in the presence of uncertainty. The journal seeks to emphasize methods that cross stochastic analysis, statistical modeling and scientific computing. Systems of interest are governed by differential equations possibly with multiscale features. Topics of particular interest include representation of uncertainty, propagation of uncertainty across scales, resolving the curse of dimensionality, long-time integration for stochastic PDEs, data-driven approaches for constructing stochastic models, validation, verification and uncertainty quantification for predictive computational science, and visualization of uncertainty in high-dimensional spaces. Bayesian computation and machine learning techniques are also of interest for example in the context of stochastic multiscale systems, for model selection/classification, and decision making. Reports addressing the dynamic coupling of modern experiments and modeling approaches towards predictive science are particularly encouraged. Applications of uncertainty quantification in all areas of physical and biological sciences are appropriate.