Jitendra Kethepalli, Manas Kulkarni, Anupam Kundu, Satya N Majumdar, David Mukamel, Grégory Schehr
{"title":"Full counting statistics of 1d short range Riesz gases in confinement","authors":"Jitendra Kethepalli, Manas Kulkarni, Anupam Kundu, Satya N Majumdar, David Mukamel, Grégory Schehr","doi":"10.1088/1742-5468/ad66c5","DOIUrl":null,"url":null,"abstract":"We investigate the full counting statistics of a harmonically confined 1d short range Riesz gas consisting of <italic toggle=\"yes\">N</italic> particles in equilibrium at finite temperature. The particles interact with each other through a repulsive power-law interaction with an exponent <italic toggle=\"yes\">k</italic> > 1 which includes the Calogero–Moser model for <italic toggle=\"yes\">k</italic> = 2. We examine the probability distribution of the number of particles in a finite domain <inline-formula>\n<tex-math><?CDATA $[-W, W]$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">[</mml:mo><mml:mo>−</mml:mo><mml:mi>W</mml:mi><mml:mo>,</mml:mo><mml:mi>W</mml:mi><mml:mo stretchy=\"false\">]</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad66c5ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> called number distribution, denoted by <inline-formula>\n<tex-math><?CDATA $\\mathcal{N}(W, N)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>W</mml:mi><mml:mo>,</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad66c5ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. We analyze the probability distribution of <inline-formula>\n<tex-math><?CDATA $\\mathcal{N}(W, N)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>W</mml:mi><mml:mo>,</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad66c5ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and show that it exhibits a large deviation form for large <italic toggle=\"yes\">N</italic> characterized by a speed <inline-formula>\n<tex-math><?CDATA $N^{\\frac{3k+2}{k+2}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mi>N</mml:mi><mml:mrow><mml:mfrac><mml:mrow><mml:mn>3</mml:mn><mml:mi>k</mml:mi><mml:mo>+</mml:mo><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mi>k</mml:mi><mml:mo>+</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:mrow></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad66c5ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and by a large deviation function (LDF) of the fraction <inline-formula>\n<tex-math><?CDATA $c = \\mathcal{N}(W, N)/N$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>c</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>W</mml:mi><mml:mo>,</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad66c5ieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> of the particles inside the domain and <italic toggle=\"yes\">W</italic>. We show that the density profiles that create the large deviations display interesting shape transitions as one varies <italic toggle=\"yes\">c</italic> and <italic toggle=\"yes\">W</italic>. This is manifested by a third-order phase transition exhibited by the LDF that has discontinuous third derivatives. Monte–Carlo simulations based on Metropolis–Hashtings (MH) algorithm show good agreement with our analytical expressions for the corresponding density profiles. We find that the typical fluctuations of <inline-formula>\n<tex-math><?CDATA $\\mathcal{N}(W, N)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>W</mml:mi><mml:mo>,</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad66c5ieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, obtained from our field theoretic calculations are Gaussian distributed with a variance that scales as <inline-formula>\n<tex-math><?CDATA $N^{\\nu_k}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mi>N</mml:mi><mml:mrow><mml:msub><mml:mi>ν</mml:mi><mml:mi>k</mml:mi></mml:msub></mml:mrow></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad66c5ieqn7.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, with <inline-formula>\n<tex-math><?CDATA $\\nu_k = (2-k)/(2+k)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>ν</mml:mi><mml:mi>k</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mo stretchy=\"false\">(</mml:mo><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad66c5ieqn8.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. We also present some numerical findings on the mean and the variance. Furthermore, we adapt our formalism to study the index distribution (where the domain is semi-infinite <inline-formula>\n<tex-math><?CDATA $(-\\infty, W])$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mo>−</mml:mo><mml:mi mathvariant=\"normal\">∞</mml:mi><mml:mo>,</mml:mo><mml:mi>W</mml:mi><mml:mo stretchy=\"false\">]</mml:mo><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad66c5ieqn9.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, linear statistics (the variance), thermodynamic pressure and bulk modulus.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"45 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Mechanics: Theory and Experiment","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1742-5468/ad66c5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the full counting statistics of a harmonically confined 1d short range Riesz gas consisting of N particles in equilibrium at finite temperature. The particles interact with each other through a repulsive power-law interaction with an exponent k > 1 which includes the Calogero–Moser model for k = 2. We examine the probability distribution of the number of particles in a finite domain [−W,W] called number distribution, denoted by N(W,N). We analyze the probability distribution of N(W,N) and show that it exhibits a large deviation form for large N characterized by a speed N3k+2k+2 and by a large deviation function (LDF) of the fraction c=N(W,N)/N of the particles inside the domain and W. We show that the density profiles that create the large deviations display interesting shape transitions as one varies c and W. This is manifested by a third-order phase transition exhibited by the LDF that has discontinuous third derivatives. Monte–Carlo simulations based on Metropolis–Hashtings (MH) algorithm show good agreement with our analytical expressions for the corresponding density profiles. We find that the typical fluctuations of N(W,N), obtained from our field theoretic calculations are Gaussian distributed with a variance that scales as Nνk, with νk=(2−k)/(2+k). We also present some numerical findings on the mean and the variance. Furthermore, we adapt our formalism to study the index distribution (where the domain is semi-infinite (−∞,W]), linear statistics (the variance), thermodynamic pressure and bulk modulus.
期刊介绍:
JSTAT is targeted to a broad community interested in different aspects of statistical physics, which are roughly defined by the fields represented in the conferences called ''Statistical Physics''. Submissions from experimentalists working on all the topics which have some ''connection to statistical physics are also strongly encouraged.
The journal covers different topics which correspond to the following keyword sections.
1. Quantum statistical physics, condensed matter, integrable systems
Scientific Directors: Eduardo Fradkin and Giuseppe Mussardo
2. Classical statistical mechanics, equilibrium and non-equilibrium
Scientific Directors: David Mukamel, Matteo Marsili and Giuseppe Mussardo
3. Disordered systems, classical and quantum
Scientific Directors: Eduardo Fradkin and Riccardo Zecchina
4. Interdisciplinary statistical mechanics
Scientific Directors: Matteo Marsili and Riccardo Zecchina
5. Biological modelling and information
Scientific Directors: Matteo Marsili, William Bialek and Riccardo Zecchina