Entropy production of the contact model

IF 2.2 3区 物理与天体物理 Q2 MECHANICS
Tânia Tomé, Mário J de Oliveira
{"title":"Entropy production of the contact model","authors":"Tânia Tomé, Mário J de Oliveira","doi":"10.1088/1742-5468/ad72db","DOIUrl":null,"url":null,"abstract":"We propose an expression for the production of entropy for a system described by a stochastic dynamics which is appropriate for the case where the reverse transition rate vanishes but the forward transition is nonzero. The expression is positive definite and based on the inequality <inline-formula>\n<tex-math><?CDATA $x\\ln x-(x-1)\\unicode{x2A7E}0$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>x</mml:mi><mml:mi>ln</mml:mi><mml:mo>⁡</mml:mo><mml:mi>x</mml:mi><mml:mo>−</mml:mo><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>x</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\"false\">)</mml:mo><mml:mtext>⩾</mml:mtext><mml:mn>0</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"jstatad72dbieqn1.gif\"></inline-graphic></inline-formula>. The corresponding entropy flux is linear in the probability distribution allowing its calculation as an average. The expression is applied to the one-dimensional contact process at the stationary state. We found that the rate of entropy production per site is finite with a singularity at the critical point with diverging slope.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"11 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Mechanics: Theory and Experiment","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1742-5468/ad72db","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an expression for the production of entropy for a system described by a stochastic dynamics which is appropriate for the case where the reverse transition rate vanishes but the forward transition is nonzero. The expression is positive definite and based on the inequality xlnx(x1)0. The corresponding entropy flux is linear in the probability distribution allowing its calculation as an average. The expression is applied to the one-dimensional contact process at the stationary state. We found that the rate of entropy production per site is finite with a singularity at the critical point with diverging slope.
接触模型的熵产生
我们提出了一个随机动力学描述系统的熵产生表达式,它适用于反向转换率消失但正向转换率不为零的情况。该表达式为正定式,基于不等式 xlnx-(x-1)⩾0。相应的熵通量在概率分布中是线性的,可以平均计算。该表达式适用于静止状态下的一维接触过程。我们发现,每个点的熵产生率是有限的,在临界点存在一个斜率发散的奇点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
12.50%
发文量
210
审稿时长
1.0 months
期刊介绍: JSTAT is targeted to a broad community interested in different aspects of statistical physics, which are roughly defined by the fields represented in the conferences called ''Statistical Physics''. Submissions from experimentalists working on all the topics which have some ''connection to statistical physics are also strongly encouraged. The journal covers different topics which correspond to the following keyword sections. 1. Quantum statistical physics, condensed matter, integrable systems Scientific Directors: Eduardo Fradkin and Giuseppe Mussardo 2. Classical statistical mechanics, equilibrium and non-equilibrium Scientific Directors: David Mukamel, Matteo Marsili and Giuseppe Mussardo 3. Disordered systems, classical and quantum Scientific Directors: Eduardo Fradkin and Riccardo Zecchina 4. Interdisciplinary statistical mechanics Scientific Directors: Matteo Marsili and Riccardo Zecchina 5. Biological modelling and information Scientific Directors: Matteo Marsili, William Bialek and Riccardo Zecchina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信