Jingmiao Jia, Bin Guo, Huawei Gao, Yanwei Zhao, Guojie Li, Aoxuan Wang, Chuntai Liu
{"title":"Stabilizing sodium metal anodes by functional polymers","authors":"Jingmiao Jia, Bin Guo, Huawei Gao, Yanwei Zhao, Guojie Li, Aoxuan Wang, Chuntai Liu","doi":"10.1016/j.mtener.2024.101664","DOIUrl":null,"url":null,"abstract":"With the development of the next-generation energy storage systems, rechargeable secondary batteries that improve energy density and safety are necessary to achieve energy iteration. Because of their low cost and high energy density, sodium metal batteries (SMBs) have great potential in the future. However, due to the instability of the solid electrolyte interface (SEI), the growth of sodium dendrites, and the volume expansion of the sodium metal anodes (SMAs) during planting and stripping, its practical implementation is hindered. In recent years, with the deepening of polymer chemistry research, polymers have been widely used to improve the batteries’ actual performance, safety, and durability as a result of their strong chemical stability, processability, structural designability, and functional diversity. Based on the basic understanding of the relationship between polymer structure and properties, polymer design and common processing methods of stable SMAs are systematically summarized. Furthermore, the strategies of polymers to stabilize SMAs were reviewed from five aspects: artificial SEI, separators, gel polymer electrolytes, solid polymer electrolytes, and anode hosts. The current research status and difficulties in optimizing SMAs to achieve high stability are discussed. Finally, the challenges and potential development directions of SMAs are discussed.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"13 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101664","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of the next-generation energy storage systems, rechargeable secondary batteries that improve energy density and safety are necessary to achieve energy iteration. Because of their low cost and high energy density, sodium metal batteries (SMBs) have great potential in the future. However, due to the instability of the solid electrolyte interface (SEI), the growth of sodium dendrites, and the volume expansion of the sodium metal anodes (SMAs) during planting and stripping, its practical implementation is hindered. In recent years, with the deepening of polymer chemistry research, polymers have been widely used to improve the batteries’ actual performance, safety, and durability as a result of their strong chemical stability, processability, structural designability, and functional diversity. Based on the basic understanding of the relationship between polymer structure and properties, polymer design and common processing methods of stable SMAs are systematically summarized. Furthermore, the strategies of polymers to stabilize SMAs were reviewed from five aspects: artificial SEI, separators, gel polymer electrolytes, solid polymer electrolytes, and anode hosts. The current research status and difficulties in optimizing SMAs to achieve high stability are discussed. Finally, the challenges and potential development directions of SMAs are discussed.
随着下一代储能系统的发展,提高能量密度和安全性的可充电二次电池是实现能量迭代的必要条件。钠金属电池(SMB)因其低成本和高能量密度,在未来具有巨大的发展潜力。然而,由于固体电解质界面(SEI)的不稳定性、钠树枝状物的生长以及钠金属阳极(SMA)在种植和剥离过程中的体积膨胀,其实际应用受到了阻碍。近年来,随着高分子化学研究的不断深入,聚合物因其化学稳定性强、可加工性好、结构可设计性强、功能多样化等特点,被广泛应用于提高电池的实际性能、安全性和耐久性。基于对聚合物结构与性能关系的基本认识,系统总结了稳定 SMA 的聚合物设计和常用加工方法。此外,还从人工 SEI、分离器、凝胶聚合物电解质、固体聚合物电解质和阳极宿主五个方面综述了聚合物稳定 SMA 的策略。讨论了优化 SMA 以实现高稳定性的研究现状和难点。最后,讨论了 SMAs 所面临的挑战和潜在的发展方向。
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials