{"title":"Sampled-data synchronization for heterogeneous delays inertial neural networks with generally uncertain semi-Markovian jumping and its application","authors":"Junyi Wang, Wenyuan He, Hongli Xu, Haibin Cai, Xiangyong Chen","doi":"10.1007/s00521-024-10192-4","DOIUrl":null,"url":null,"abstract":"<p>This article is concerned with sampled-data synchronization problem of heterogeneous delays inertial neural networks (INNs) with generally uncertain semi-Markovian (GUSM) jumping. Different from traditional Markovian inertial neural networks (MINNs), the INNs with GUSM are investigated in this paper by fully considering the sojourn time and the lacking transition rates, which is more general and applicable for practical system. The new extended two-sided looped-functional (ETSLF) approach is adopted in this paper, and some improved less conservative criteria are derived to achieve the synchronization of the drive and response INNs. The controller gain matrices are acquired based on synchronization criteria. Finally, the viability of the method is presented through three examples.</p>","PeriodicalId":18925,"journal":{"name":"Neural Computing and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00521-024-10192-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article is concerned with sampled-data synchronization problem of heterogeneous delays inertial neural networks (INNs) with generally uncertain semi-Markovian (GUSM) jumping. Different from traditional Markovian inertial neural networks (MINNs), the INNs with GUSM are investigated in this paper by fully considering the sojourn time and the lacking transition rates, which is more general and applicable for practical system. The new extended two-sided looped-functional (ETSLF) approach is adopted in this paper, and some improved less conservative criteria are derived to achieve the synchronization of the drive and response INNs. The controller gain matrices are acquired based on synchronization criteria. Finally, the viability of the method is presented through three examples.