Henghui Chen, Jing Wang, Yuan Zhao, Xuefeng Zhou, Heran Yang, Yan Li, Yingmei Li, Ehsan Alborzi, Xue Yong, John S. Tse
{"title":"Interface engineering of the dz2 electrons mobility for single atom catalytic activity and selectivity","authors":"Henghui Chen, Jing Wang, Yuan Zhao, Xuefeng Zhou, Heran Yang, Yan Li, Yingmei Li, Ehsan Alborzi, Xue Yong, John S. Tse","doi":"10.1016/j.mtener.2024.101661","DOIUrl":null,"url":null,"abstract":"Transition metal singlet embedded in nitrogen-doped carbon material (M-N-C) has been demonstrated as a promising electrochemical oxygen reduction reaction (ORR) catalyst; however, the unsatisfying activity and production selectivity have hampered its widespread applications in energy storage and conversion technologies. Herein, interface engineering by facilitating M-N-C catalysts (M from 3d to 4d electron-containing elements) with MXene has been utilized to regulate their ORR performance. It is found that the charge transfer occurring within the interface not only tunes the electron occupancy of the 3d/4d orbitals of the metal site, but also delocalizes the population of the d states. This alternation enhances the mobility of the electrons and promotes the 4e catalytic process thermodynamically. Meanwhile, the formation of ∗HOOH, the key reaction intermediate for 2e reaction, is hindered due to the alleviation of the binding capacity, which is beneficial to improve production selectivity. This study provides foundational understanding for the ORR catalytic mechanism at the atomic level and opens up new avenues for designing high-demanded electrocatalysts.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"101 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101661","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal singlet embedded in nitrogen-doped carbon material (M-N-C) has been demonstrated as a promising electrochemical oxygen reduction reaction (ORR) catalyst; however, the unsatisfying activity and production selectivity have hampered its widespread applications in energy storage and conversion technologies. Herein, interface engineering by facilitating M-N-C catalysts (M from 3d to 4d electron-containing elements) with MXene has been utilized to regulate their ORR performance. It is found that the charge transfer occurring within the interface not only tunes the electron occupancy of the 3d/4d orbitals of the metal site, but also delocalizes the population of the d states. This alternation enhances the mobility of the electrons and promotes the 4e catalytic process thermodynamically. Meanwhile, the formation of ∗HOOH, the key reaction intermediate for 2e reaction, is hindered due to the alleviation of the binding capacity, which is beneficial to improve production selectivity. This study provides foundational understanding for the ORR catalytic mechanism at the atomic level and opens up new avenues for designing high-demanded electrocatalysts.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials