Dattatray Namdev Sutar, Sandip Prabhakar Shelake, Nagamalleswara Rao Indla, Sagar Varangane, Annadanam V. Sesha Sainath, Ujjwal Pal
{"title":"Visible light-driven photoreforming of polystyrene segmented glycopolymer architectures for enhanced hydrogen generation","authors":"Dattatray Namdev Sutar, Sandip Prabhakar Shelake, Nagamalleswara Rao Indla, Sagar Varangane, Annadanam V. Sesha Sainath, Ujjwal Pal","doi":"10.1016/j.mtener.2024.101667","DOIUrl":null,"url":null,"abstract":"In this report, a series of polystyrene segmented new glycopolymer architectures are synthesized, which are utilized in the photoreforming process to achieve a remarkable rate of hydrogen production. The primary building blocks of mono-, bi-, and tetra-functional photo-iniferter were employed in the RAFT polymerization process to design a series of block copolymer architectures using styrene and acetylated glucose methacrylate monomers. Acetylated polymer architectures exhibited higher thermal stability compared to deacetylated polymers. Deacetylated polymers showed lower T values than the acetylated polymers. In addition, a wide range of T values (55–96 °C) and variations in the T values of the acetylated polymers indicate the dependence on the nature of the pendant unit and macromolecular architecture. The deacetylated macromolecule, 1A-PS--PGM diblock copolymer exhibits a hydrogen generation rate of ∼753 μmol/g/h with an AQY of ∼1.84% compared to that of the polystyrene segment alone (53 μmol/g/h, AQY of ∼0.02%). Within the range of possible synthesized glycopolymer architectures, linear and glucose-based triblock glycopolymers show promising activity. The kinetics of the water-splitting reaction are influenced by adjustments to both the solution's pH and the hydrophilicity of the glycomacromolecular chains.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101667","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this report, a series of polystyrene segmented new glycopolymer architectures are synthesized, which are utilized in the photoreforming process to achieve a remarkable rate of hydrogen production. The primary building blocks of mono-, bi-, and tetra-functional photo-iniferter were employed in the RAFT polymerization process to design a series of block copolymer architectures using styrene and acetylated glucose methacrylate monomers. Acetylated polymer architectures exhibited higher thermal stability compared to deacetylated polymers. Deacetylated polymers showed lower T values than the acetylated polymers. In addition, a wide range of T values (55–96 °C) and variations in the T values of the acetylated polymers indicate the dependence on the nature of the pendant unit and macromolecular architecture. The deacetylated macromolecule, 1A-PS--PGM diblock copolymer exhibits a hydrogen generation rate of ∼753 μmol/g/h with an AQY of ∼1.84% compared to that of the polystyrene segment alone (53 μmol/g/h, AQY of ∼0.02%). Within the range of possible synthesized glycopolymer architectures, linear and glucose-based triblock glycopolymers show promising activity. The kinetics of the water-splitting reaction are influenced by adjustments to both the solution's pH and the hydrophilicity of the glycomacromolecular chains.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials