JaxLife: An Open-Ended Agentic Simulator

Chris Lu, Michael Beukman, Michael Matthews, Jakob Foerster
{"title":"JaxLife: An Open-Ended Agentic Simulator","authors":"Chris Lu, Michael Beukman, Michael Matthews, Jakob Foerster","doi":"arxiv-2409.00853","DOIUrl":null,"url":null,"abstract":"Human intelligence emerged through the process of natural selection and\nevolution on Earth. We investigate what it would take to re-create this process\nin silico. While past work has often focused on low-level processes (such as\nsimulating physics or chemistry), we instead take a more targeted approach,\naiming to evolve agents that can accumulate open-ended culture and technologies\nacross generations. Towards this, we present JaxLife: an artificial life\nsimulator in which embodied agents, parameterized by deep neural networks, must\nlearn to survive in an expressive world containing programmable systems. First,\nwe describe the environment and show that it can facilitate meaningful\nTuring-complete computation. We then analyze the evolved emergent agents'\nbehavior, such as rudimentary communication protocols, agriculture, and tool\nuse. Finally, we investigate how complexity scales with the amount of compute\nused. We believe JaxLife takes a step towards studying evolved behavior in more\nopen-ended simulations. Our code is available at\nhttps://github.com/luchris429/JaxLife","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human intelligence emerged through the process of natural selection and evolution on Earth. We investigate what it would take to re-create this process in silico. While past work has often focused on low-level processes (such as simulating physics or chemistry), we instead take a more targeted approach, aiming to evolve agents that can accumulate open-ended culture and technologies across generations. Towards this, we present JaxLife: an artificial life simulator in which embodied agents, parameterized by deep neural networks, must learn to survive in an expressive world containing programmable systems. First, we describe the environment and show that it can facilitate meaningful Turing-complete computation. We then analyze the evolved emergent agents' behavior, such as rudimentary communication protocols, agriculture, and tool use. Finally, we investigate how complexity scales with the amount of compute used. We believe JaxLife takes a step towards studying evolved behavior in more open-ended simulations. Our code is available at https://github.com/luchris429/JaxLife
JaxLife:开放式代理模拟器
人类智慧是通过地球上的自然选择和进化过程产生的。我们研究了在硅学中重新创造这一过程所需要的条件。过去的研究通常侧重于低级过程(如模仿物理或化学),而我们则采取了一种更有针对性的方法,旨在进化出能够跨代积累开放式文化和技术的代理。为此,我们提出了 "JaxLife":一个人工生命模拟器,在这个模拟器中,由深度神经网络参数化的代理必须学会在一个包含可编程系统的富有表现力的世界中生存。首先,我们描述了这个环境,并证明它可以促进有意义的图灵完备计算。然后,我们分析了进化出的新兴代理行为,如初级通信协议、农业和工具使用。最后,我们研究了复杂性如何随着计算量的增加而增加。我们相信,JaxLife 为在更开放的模拟中研究进化行为迈出了一步。我们的代码可在https://github.com/luchris429/JaxLife
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信