Yufei Zhang, Zhongyang Bai, Yuhui Zhang, Yingcheng Hu
{"title":"Compression and energy absorption of wood-based reinforced 3D Kagome lattice structures","authors":"Yufei Zhang, Zhongyang Bai, Yuhui Zhang, Yingcheng Hu","doi":"10.1177/10996362241272808","DOIUrl":null,"url":null,"abstract":"3D Kagome lattice sandwich structure is recognized as the most excellent lattice configuration. However, the preparation method of 3D Kagome is complicated and the raw materials for its preparation are limited to materials with high plasticity. In this study, we developed a wood-based 3D Kagome lattice structure that combines discrete rods into a continuous core using reinforcement. Orthogonal tests, theoretical analysis, and finite element simulations were performed to investigate the correlation between the dimensional parameters, the mechanical properties, and the energy absorption capacity. The damage modes were found to be mainly bending fracture, core shear, and panel rupture, with the use of reinforcement affecting the damage modes. Compressive properties of the 3D Kagome lattice structure are increased by increasing core diameter and inclination degree, decreasing core in-cut diameter, and using high-strength reinforcements. Finite element simulations further confirm that the use of high-strength reinforcements changes the stress distribution of the lattice structure. The 3D Kagome lattice structure with an inclination degree of 65°, a core diameter of 10 mm, a reinforcement wall thickness of 2 mm, and a core in-cut diameter of 2 mm has the optimal compression performance and energy absorption capacity.","PeriodicalId":17215,"journal":{"name":"Journal of Sandwich Structures & Materials","volume":"45 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sandwich Structures & Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/10996362241272808","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
3D Kagome lattice sandwich structure is recognized as the most excellent lattice configuration. However, the preparation method of 3D Kagome is complicated and the raw materials for its preparation are limited to materials with high plasticity. In this study, we developed a wood-based 3D Kagome lattice structure that combines discrete rods into a continuous core using reinforcement. Orthogonal tests, theoretical analysis, and finite element simulations were performed to investigate the correlation between the dimensional parameters, the mechanical properties, and the energy absorption capacity. The damage modes were found to be mainly bending fracture, core shear, and panel rupture, with the use of reinforcement affecting the damage modes. Compressive properties of the 3D Kagome lattice structure are increased by increasing core diameter and inclination degree, decreasing core in-cut diameter, and using high-strength reinforcements. Finite element simulations further confirm that the use of high-strength reinforcements changes the stress distribution of the lattice structure. The 3D Kagome lattice structure with an inclination degree of 65°, a core diameter of 10 mm, a reinforcement wall thickness of 2 mm, and a core in-cut diameter of 2 mm has the optimal compression performance and energy absorption capacity.
期刊介绍:
The Journal of Sandwich Structures and Materials is an international peer reviewed journal that provides a means of communication to fellow engineers and scientists by providing an archival record of developments in the science, technology, and professional practices of sandwich construction throughout the world. This journal is a member of the Committee on Publication Ethics (COPE).