Theoretical spin transport analysis for a spin pseudovalve-type $\mathrm{L}_j$/semiconductor/$\mathrm{L}_j$ trilayer (with $\mathrm{L}_j$ = ferromagnetic)

Julián A. Zúñiga, Arles V. Gil Rebaza, Diego F. Coral Coral
{"title":"Theoretical spin transport analysis for a spin pseudovalve-type $\\mathrm{L}_j$/semiconductor/$\\mathrm{L}_j$ trilayer (with $\\mathrm{L}_j$ = ferromagnetic)","authors":"Julián A. Zúñiga, Arles V. Gil Rebaza, Diego F. Coral Coral","doi":"arxiv-2409.04635","DOIUrl":null,"url":null,"abstract":"In this work, a theoretical study of spin transport in a pseudovalve spin\n(PSV) heterostructure is conducted. For the semiconductor (SC), the conduction\nband at the $\\Gamma$ point of reciprocal space and spin-orbit coupling (SOC)\nare considered. For the ferromagnetic (FM) electrodes on the left ($l$) and\nright ($r$), the internal exchange energy ($\\Delta_j$, where $j =\n\\left(l,r\\right)$) and the magnetization normal vector ($\\mathbf{n}_j$) on the\nbarrier plane are taken into account. An analytical expression for the\ntransmission probability as a function of $\\mathbf{n}_j$ direction was obtained\nfrom the {\\em Schr\\\"odinger-Pauli} equations with the boundary conditions.\nFurthermore, the tunnel magnetoresistance (TMR) at T $\\approx$ 0 K was\ncalculated, depending on the direction of the crystallographic axis favoring\nthe magnetization ($\\theta_m$) of the FM and the thickness of the SC, using the\n{\\em Landauer-B\\\"{u}ttiker} formula for a single channel. It is observed that\nthe TMR reaches its maximum value when the $\\mathbf{n}_l$ direction is parallel\nto $\\theta_m$. Applying this physico-mathematical model to the Fe/SC/Fe PSV,\nwith SC as GaAs, GaSb, and InAs, it was found that the {\\em Dresselhaus} SOC\ndoes not significantly contribute to the TMR.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a theoretical study of spin transport in a pseudovalve spin (PSV) heterostructure is conducted. For the semiconductor (SC), the conduction band at the $\Gamma$ point of reciprocal space and spin-orbit coupling (SOC) are considered. For the ferromagnetic (FM) electrodes on the left ($l$) and right ($r$), the internal exchange energy ($\Delta_j$, where $j = \left(l,r\right)$) and the magnetization normal vector ($\mathbf{n}_j$) on the barrier plane are taken into account. An analytical expression for the transmission probability as a function of $\mathbf{n}_j$ direction was obtained from the {\em Schr\"odinger-Pauli} equations with the boundary conditions. Furthermore, the tunnel magnetoresistance (TMR) at T $\approx$ 0 K was calculated, depending on the direction of the crystallographic axis favoring the magnetization ($\theta_m$) of the FM and the thickness of the SC, using the {\em Landauer-B\"{u}ttiker} formula for a single channel. It is observed that the TMR reaches its maximum value when the $\mathbf{n}_l$ direction is parallel to $\theta_m$. Applying this physico-mathematical model to the Fe/SC/Fe PSV, with SC as GaAs, GaSb, and InAs, it was found that the {\em Dresselhaus} SOC does not significantly contribute to the TMR.
自旋伪ovalve 型 $\mathrm{L}_j$/semiconductor/$mathrm{L}_j$ 三层($\mathrm{L}_j$ = 铁磁)的理论自旋输运分析
在这项工作中,我们对伪自旋(PSV)异质结构中的自旋传输进行了理论研究。对于半导体(SC),考虑了倒易空间 $\Gamma$ 点的导带和自旋轨道耦合(SOC)。对于左侧($l$)和右侧($r$)的铁磁(FM)电极,考虑了内部交换能($\Delta_j$,其中$j =\left(l,r\right)$)和势垒平面上的磁化法向量($\mathbf{n}_j$)。根据带有边界条件的{em Schr\"odinger-Pauli} 方程,得到了传输概率作为 $\mathbf{n}_j$ 方向函数的解析表达式。此外,利用单通道的{em Landauer-B\"{u}ttiker}公式计算了T $/approx$ 0 K时的隧道磁阻(TMR),这取决于有利于调频磁化($\theta_m$)的晶体学轴的方向和SC的厚度。观察发现,当 $\mathbf{n}_l$ 方向与 $\theta_m$ 平行时,TMR 达到最大值。将这一物理数学模型应用于 Fe/SC/Fe PSV(SC 为 GaAs、GaSb 和 InAs)时,发现{em Dresselhaus} SOC 并未显著影响 TMR。SOC 对 TMR 的影响不大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信