Powder Diffraction Crystal Structure Determination Using Generative Models

Qi Li, Rui Jiao, Liming Wu, Tiannian Zhu, Wenbing Huang, Shifeng Jin, Yang Liu, Hongming Weng, Xiaolong Chen
{"title":"Powder Diffraction Crystal Structure Determination Using Generative Models","authors":"Qi Li, Rui Jiao, Liming Wu, Tiannian Zhu, Wenbing Huang, Shifeng Jin, Yang Liu, Hongming Weng, Xiaolong Chen","doi":"arxiv-2409.04727","DOIUrl":null,"url":null,"abstract":"Accurate crystal structure determination is critical across all scientific\ndisciplines involving crystalline materials. However, solving and refining\ninorganic crystal structures from powder X-ray diffraction (PXRD) data is\ntraditionally a labor-intensive and time-consuming process that demands\nsubstantial expertise. In this work, we introduce PXRDGen, an end-to-end neural\nnetwork that determines crystal structures by learning joint structural\ndistributions from experimentally stable crystals and their PXRD, producing\natomically accurate structures refined through PXRD data. PXRDGen integrates a\npretrained XRD encoder, a diffusion/flow-based structure generator, and a\nRietveld refinement module, enabling the solution of structures with\nunparalleled accuracy in a matter of seconds. Evaluation on MP-20 inorganic\ndataset reveals a remarkable matching rate of 82% (1 sample) and 96% (20\nsamples) for valid compounds, with Root Mean Square Error (RMSE) approaching\nthe precision limits of Rietveld refinement. PXRDGen effectively tackles key\nchallenges in XRD, such as the precise localization of light atoms,\ndifferentiation of neighboring elements, and resolution of overlapping peaks.\nOverall, PXRDGen marks a significant advancement in the automated determination\nof crystal structures from powder diffraction data.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate crystal structure determination is critical across all scientific disciplines involving crystalline materials. However, solving and refining inorganic crystal structures from powder X-ray diffraction (PXRD) data is traditionally a labor-intensive and time-consuming process that demands substantial expertise. In this work, we introduce PXRDGen, an end-to-end neural network that determines crystal structures by learning joint structural distributions from experimentally stable crystals and their PXRD, producing atomically accurate structures refined through PXRD data. PXRDGen integrates a pretrained XRD encoder, a diffusion/flow-based structure generator, and a Rietveld refinement module, enabling the solution of structures with unparalleled accuracy in a matter of seconds. Evaluation on MP-20 inorganic dataset reveals a remarkable matching rate of 82% (1 sample) and 96% (20 samples) for valid compounds, with Root Mean Square Error (RMSE) approaching the precision limits of Rietveld refinement. PXRDGen effectively tackles key challenges in XRD, such as the precise localization of light atoms, differentiation of neighboring elements, and resolution of overlapping peaks. Overall, PXRDGen marks a significant advancement in the automated determination of crystal structures from powder diffraction data.
使用生成模型进行粉末衍射晶体结构测定
精确的晶体结构测定对所有涉及晶体材料的科学领域都至关重要。然而,从粉末 X 射线衍射(PXRD)数据中求解和完善无机晶体结构传统上是一个劳动密集型的耗时过程,需要大量的专业知识。在这项工作中,我们介绍了 PXRDGen,它是一种端到端神经网络,通过学习实验稳定晶体及其 PXRD 的联合结构分布来确定晶体结构,从而生成通过 PXRD 数据精炼的解剖学精确结构。PXRDGen 集成了经过训练的 XRD 编码器、基于扩散/流动的结构生成器和里特维尔德细化模块,可在几秒钟内求解出无比精确的结构。在 MP-20 无机数据集上进行的评估显示,有效化合物的匹配率分别达到 82%(1 个样品)和 96%(20 个样品),均方根误差(RMSE)接近里特维尔德细化的精度极限。总之,PXRDGen 标志着从粉末衍射数据自动确定晶体结构方面的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信