Exploring the potential of combining over- and under-stoichiometric MIEC materials for Oxygen-Ion Batteries

Silvère PanissetUniv. Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, FranceUniv. Grenoble Alpes, CNRS, Grenoble INP, SIMAP, Grenoble, France, Alexander SchmidTU Wien, Institute of Chemical Technologies and Analytics, Vienna, Austria, Alexander StanglUniv. Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, France, Juergen FleigTU Wien, Institute of Chemical Technologies and Analytics, Vienna, Austria, David JauffresUniv. Grenoble Alpes, CNRS, Grenoble INP, SIMAP, Grenoble, France, Mónica BurrielUniv. Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, France
{"title":"Exploring the potential of combining over- and under-stoichiometric MIEC materials for Oxygen-Ion Batteries","authors":"Silvère PanissetUniv. Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, FranceUniv. Grenoble Alpes, CNRS, Grenoble INP, SIMAP, Grenoble, France, Alexander SchmidTU Wien, Institute of Chemical Technologies and Analytics, Vienna, Austria, Alexander StanglUniv. Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, France, Juergen FleigTU Wien, Institute of Chemical Technologies and Analytics, Vienna, Austria, David JauffresUniv. Grenoble Alpes, CNRS, Grenoble INP, SIMAP, Grenoble, France, Mónica BurrielUniv. Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, France","doi":"arxiv-2409.05582","DOIUrl":null,"url":null,"abstract":"The increasing demand for energy storage solutions has spurred intensive\nresearch into next-generation battery technologies. Oxygen-ion batteries\n(OIBs), which leverage mixed ionic-electronic conducting (MIEC) oxides, have\nemerged as promising candidates due to their solid, non-flammable nature and\npotential for high power densities. This study investigates the use of\nover-stoichiometric La2NiO4+delta (L2NO4) as a cathode material for OIBs,\nexploring its capacity for electrochemical energy storage. Half-cell\nmeasurements reveal that L2NO4 with a closed-pore microstructure can store\noxygen, achieving a volumetric charge of 63 mA.h.cm-3 at 400 {\\deg}C with a\ncurrent density of 3.6 uA.cm-2 and potentials up to 0.75 V vs. 1 bar O2.\nAdditionally, a functional full cell combining over-stoichiometric L2NO4 and\nunder-stoichiometric La0.5Sr0.5Cr0.2Mn0.8O3-delta (LSCrMn) has been\nsuccessfully developed, demonstrating excellent cyclability and coulomb\nefficiency. The full cell reaches a maximum volumetric charge of 90 mA.h.cm-3\nat 400 {\\deg}C, 17.8 uA.cm-2, and a cut-off voltage of 1.8 V. This proof of\nconcept underscores the viability of combining over- and under-stoichiometric\nMIEC materials in OIBs and provides critical insights into optimizing electrode\nmaterials and tuning oxygen content for improved performance. This research\nlays the groundwork for future advancements in OIB technology, aiming to\ndevelop materials with lower resistance and higher efficiency.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing demand for energy storage solutions has spurred intensive research into next-generation battery technologies. Oxygen-ion batteries (OIBs), which leverage mixed ionic-electronic conducting (MIEC) oxides, have emerged as promising candidates due to their solid, non-flammable nature and potential for high power densities. This study investigates the use of over-stoichiometric La2NiO4+delta (L2NO4) as a cathode material for OIBs, exploring its capacity for electrochemical energy storage. Half-cell measurements reveal that L2NO4 with a closed-pore microstructure can store oxygen, achieving a volumetric charge of 63 mA.h.cm-3 at 400 {\deg}C with a current density of 3.6 uA.cm-2 and potentials up to 0.75 V vs. 1 bar O2. Additionally, a functional full cell combining over-stoichiometric L2NO4 and under-stoichiometric La0.5Sr0.5Cr0.2Mn0.8O3-delta (LSCrMn) has been successfully developed, demonstrating excellent cyclability and coulomb efficiency. The full cell reaches a maximum volumetric charge of 90 mA.h.cm-3 at 400 {\deg}C, 17.8 uA.cm-2, and a cut-off voltage of 1.8 V. This proof of concept underscores the viability of combining over- and under-stoichiometric MIEC materials in OIBs and provides critical insights into optimizing electrode materials and tuning oxygen content for improved performance. This research lays the groundwork for future advancements in OIB technology, aiming to develop materials with lower resistance and higher efficiency.
探索将化学计量过高和过低的 MIEC 材料结合用于氧离子电池的潜力
对储能解决方案日益增长的需求刺激了对下一代电池技术的深入研究。氧离子电池(OIBs)利用混合离子-电子导电(MIEC)氧化物,因其固态、不易燃的特性和高功率密度的潜力,已成为前景广阔的候选电池。本研究调查了过计量 La2NiO4+delta (L2NO4) 作为 OIBs 阴极材料的使用情况,探索其电化学储能能力。半电池测量结果表明,具有闭孔微结构的 L2NO4 可以储存氧气,在 400 {\deg}C 温度下可实现 63 mA.h.cm-3 的体积电荷,电流密度为 3.6 uA.cm-2,对 1 bar O2 的电位高达 0.75 V。此外,还成功开发了一种功能性全电池,它结合了过计量 L2NO4 和欠计量 La0.5Sr0.5Cr0.2Mn0.8O3-delta (LSCrMn),显示出卓越的循环性和耦合效率。这一概念验证强调了在 OIB 中结合过高和过低化学计量的 MIEC 材料的可行性,并为优化电极材料和调整氧含量以提高性能提供了重要见解。这项研究为 OIB 技术的未来发展奠定了基础,旨在开发出电阻更小、效率更高的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信