Arkajit Ghosh, Wenqian Wu, Tao Ma, Ashwin J. Shahani, Jian Wang, Amit Misra
{"title":"Systematic discovery of new nano-scale metastable intermetallic eutectic phases in laser rapid solidified Aluminum-Germanium alloy","authors":"Arkajit Ghosh, Wenqian Wu, Tao Ma, Ashwin J. Shahani, Jian Wang, Amit Misra","doi":"arxiv-2409.07648","DOIUrl":null,"url":null,"abstract":"Laser surface remelting of as-cast Al-Ge eutectic alloy is shown to produce\nultrafine lamellar eutectic morphology with interlamellar spacing refined up to\n~60 nm and composed of FCC Al solid solution and unusual AlxGey intermetallic\nphases that do not form during near-equilibrium solidification. The\nmicrostructures are characterized and analyzed using a combination of selected\narea electron diffraction, high-resolution scanning transmission electron\nmicroscopy, energy dispersive X-ray spectroscopy to obtain high-resolution\nelemental maps, and atomistic modeling using density functional theory followed\nby atomic-scale image simulation. Depending on the local solidification\nconditions, the crystallography of the AlxGey intermetallic phases in the\neutectic microstructure is either monoclinic (C 2/c) or monoclinic (P 21), with\nhigh densities of defects in both cases. This is in sharp contrast to the\nas-cast alloys that showed nominally pure Al and Ge phases with significant\nsolute partitioning and equilibrium FCC and diamond cubic crystal structures,\nrespectively. Corresponding kinetic phase diagrams are proposed to interpret\nthe evolution of nano-lamellar eutectic morphologies with equilibrium Al and\nmetastable AlxGey phases, and to explain increased solid solubility in the Al\nphases manifested by precipitation of ultrafine clusters of Ge. The reasons for\nthe formation of these metastable eutectics under laser rapid solidification\nare discussed from the perspective of the competitive growth criterion.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Laser surface remelting of as-cast Al-Ge eutectic alloy is shown to produce
ultrafine lamellar eutectic morphology with interlamellar spacing refined up to
~60 nm and composed of FCC Al solid solution and unusual AlxGey intermetallic
phases that do not form during near-equilibrium solidification. The
microstructures are characterized and analyzed using a combination of selected
area electron diffraction, high-resolution scanning transmission electron
microscopy, energy dispersive X-ray spectroscopy to obtain high-resolution
elemental maps, and atomistic modeling using density functional theory followed
by atomic-scale image simulation. Depending on the local solidification
conditions, the crystallography of the AlxGey intermetallic phases in the
eutectic microstructure is either monoclinic (C 2/c) or monoclinic (P 21), with
high densities of defects in both cases. This is in sharp contrast to the
as-cast alloys that showed nominally pure Al and Ge phases with significant
solute partitioning and equilibrium FCC and diamond cubic crystal structures,
respectively. Corresponding kinetic phase diagrams are proposed to interpret
the evolution of nano-lamellar eutectic morphologies with equilibrium Al and
metastable AlxGey phases, and to explain increased solid solubility in the Al
phases manifested by precipitation of ultrafine clusters of Ge. The reasons for
the formation of these metastable eutectics under laser rapid solidification
are discussed from the perspective of the competitive growth criterion.
研究表明,激光表面重熔铸造的铝-锗共晶合金可产生超细层状共晶形态,层间间距细化至~60 nm,由 FCC Al 固溶体和不常见的 AlxGey 金属间相组成,这些金属间相在近平衡凝固过程中不会形成。对这些微观结构的表征和分析结合使用了选区电子衍射、高分辨率扫描透射电子显微镜、能量色散 X 射线光谱以获得高分辨率元素图谱,以及使用密度泛函理论建立原子模型,然后进行原子尺度图像模拟。根据局部凝固条件的不同,共晶微观结构中的 AlxGey 金属间相的晶体结构要么是单斜(C 2/c),要么是单斜(P 21),两种情况下的缺陷密度都很高。这种情况与铸造合金形成鲜明对比,铸造合金显示出名义上纯净的 Al 相和 Ge 相,它们分别具有显著的绝对分区和平衡 FCC 晶体结构以及金刚石立方晶体结构。我们提出了相应的动力学相图来解释纳米胶束共晶形态与平衡铝相和可蜕变的 AlxGey 相的演变,并解释了 Alphases 中固体溶解度的增加(表现为超细 Ge 簇的沉淀)。从竞争生长准则的角度讨论了在激光快速凝固条件下形成这些可蜕变共晶的原因。