{"title":"Co-Gasification of Plastic Waste Blended with Biomass: Process Modeling and Multi-Objective Optimization","authors":"Tanawat Aentung, Yaneeporn Patcharavorachot, Wei Wu","doi":"10.3390/pr12091906","DOIUrl":null,"url":null,"abstract":"Mixed plastic/biomass co-gasification stands out as a promising and environmentally friendly technology, since it reduces wide solid wastes and produces green hydrogen. High-quality syngas can be obtained by virtue of the process design and optimization of a downdraft fixed-bed co-gasifier. The design is based on the actual reaction zones within a real gasifier to ensure accurate results. The methodology shows that (i) the co-gasifier modeling is validated using the adiabatic RGibbs model in Aspen Plus, (ii) the performance of the co-gasifier is evaluated using cold-gas efficiency (CGE) and carbon conversion efficiency (CCE) as indicators, and (iii) the multi-objective optimization (MOO) is employed to optimize these indicators simultaneously, utilizing a standard genetic algorithm (GA) combined with response surface methodology (RSM) to identify the Pareto frontier. The optimal conditions, resulting in a CGE of 91.78% and a CCE of 83.77% at a gasifier temperature of 967.89 °C, a steam-to-feed ratio of 1.40, and a plastic-to-biomass ratio of 74.23%, were identified using the technique for order of preference by similarity to ideal solution (TOPSIS). The inclusion of plastics enhances gasifier performance and syngas quality, leading to significant improvements in CGE and CCE values.","PeriodicalId":20597,"journal":{"name":"Processes","volume":"19 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/pr12091906","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mixed plastic/biomass co-gasification stands out as a promising and environmentally friendly technology, since it reduces wide solid wastes and produces green hydrogen. High-quality syngas can be obtained by virtue of the process design and optimization of a downdraft fixed-bed co-gasifier. The design is based on the actual reaction zones within a real gasifier to ensure accurate results. The methodology shows that (i) the co-gasifier modeling is validated using the adiabatic RGibbs model in Aspen Plus, (ii) the performance of the co-gasifier is evaluated using cold-gas efficiency (CGE) and carbon conversion efficiency (CCE) as indicators, and (iii) the multi-objective optimization (MOO) is employed to optimize these indicators simultaneously, utilizing a standard genetic algorithm (GA) combined with response surface methodology (RSM) to identify the Pareto frontier. The optimal conditions, resulting in a CGE of 91.78% and a CCE of 83.77% at a gasifier temperature of 967.89 °C, a steam-to-feed ratio of 1.40, and a plastic-to-biomass ratio of 74.23%, were identified using the technique for order of preference by similarity to ideal solution (TOPSIS). The inclusion of plastics enhances gasifier performance and syngas quality, leading to significant improvements in CGE and CCE values.
期刊介绍:
Processes (ISSN 2227-9717) provides an advanced forum for process related research in chemistry, biology and allied engineering fields. The journal publishes regular research papers, communications, letters, short notes and reviews. Our aim is to encourage researchers to publish their experimental, theoretical and computational results in as much detail as necessary. There is no restriction on paper length or number of figures and tables.