Aida Aguilera Infante-Neta, Alan Portal D’Almeida, Tiago Lima de Albuquerque
{"title":"Bacterial Cellulose in Food Packaging: A Bibliometric Analysis and Review of Sustainable Innovations and Prospects","authors":"Aida Aguilera Infante-Neta, Alan Portal D’Almeida, Tiago Lima de Albuquerque","doi":"10.3390/pr12091975","DOIUrl":null,"url":null,"abstract":"The scientific community has explored new packaging materials owing to environmental challenges and pollution from plastic waste. Bacterial cellulose (BC), produced by bacteria like Gluconacetobacter xylinus, shows high potential for food preservation owing to its exceptional mechanical strength, high crystallinity, and effective barrier properties against gases and moisture, making it a promising alternative to conventional plastics. This review highlights recent advances in BC production, particularly agro-industrial residues, which reduce costs and enhance environmental sustainability. Incorporating antimicrobial agents into BC matrices has also led to active packaging solutions that extend food shelf-life and improve safety. A bibliometric analysis reveals a significant increase in research on BC over the last decade, reflecting growing global interest. Key research themes include the development of BC-based composites and the exploration of their antimicrobial properties. Critical areas for future research include improving BC production’s scalability and economic viability and the integration of BC with other biopolymers. These developments emphasize BC’s potential as a sustainable packaging material and its role in the circular economy through waste valorization.","PeriodicalId":20597,"journal":{"name":"Processes","volume":"7 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/pr12091975","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The scientific community has explored new packaging materials owing to environmental challenges and pollution from plastic waste. Bacterial cellulose (BC), produced by bacteria like Gluconacetobacter xylinus, shows high potential for food preservation owing to its exceptional mechanical strength, high crystallinity, and effective barrier properties against gases and moisture, making it a promising alternative to conventional plastics. This review highlights recent advances in BC production, particularly agro-industrial residues, which reduce costs and enhance environmental sustainability. Incorporating antimicrobial agents into BC matrices has also led to active packaging solutions that extend food shelf-life and improve safety. A bibliometric analysis reveals a significant increase in research on BC over the last decade, reflecting growing global interest. Key research themes include the development of BC-based composites and the exploration of their antimicrobial properties. Critical areas for future research include improving BC production’s scalability and economic viability and the integration of BC with other biopolymers. These developments emphasize BC’s potential as a sustainable packaging material and its role in the circular economy through waste valorization.
由于塑料废弃物带来的环境挑战和污染,科学界一直在探索新的包装材料。由 Gluconacetobacter xylinus 等细菌产生的细菌纤维素(Bacterial cellulose,BC)具有极高的机械强度、高结晶度以及有效阻隔气体和湿气的特性,因此在食品保鲜方面显示出巨大潜力,有望成为传统塑料的替代品。本综述重点介绍了不饱和脂肪酸生产方面的最新进展,特别是农用工业残留物方面的进展,这些进展既降低了成本,又提高了环境的可持续性。在 BC 基质中加入抗菌剂也带来了可延长食品保质期和提高安全性的活性包装解决方案。文献计量分析表明,在过去十年中,有关不饱和脂肪酸的研究显著增加,反映出全球对不饱和脂肪酸的兴趣与日俱增。关键的研究主题包括开发以 BC 为基础的复合材料和探索其抗菌特性。未来研究的关键领域包括提高萃取物生产的可扩展性和经济可行性,以及萃取物与其他生物聚合物的整合。这些发展强调了 BC 作为可持续包装材料的潜力,以及其通过废物价值化在循环经济中的作用。
期刊介绍:
Processes (ISSN 2227-9717) provides an advanced forum for process related research in chemistry, biology and allied engineering fields. The journal publishes regular research papers, communications, letters, short notes and reviews. Our aim is to encourage researchers to publish their experimental, theoretical and computational results in as much detail as necessary. There is no restriction on paper length or number of figures and tables.