Chaofeng Chen, Xihe Liu, Dong Ruan, Xueru Chen, Xiangtong Yang, Kun Ning, Zhilong Lian
{"title":"Understanding Perforation Detonation Failure Mechanisms Based on Physicochemical Detection and Simulation Modeling","authors":"Chaofeng Chen, Xihe Liu, Dong Ruan, Xueru Chen, Xiangtong Yang, Kun Ning, Zhilong Lian","doi":"10.3390/pr12091971","DOIUrl":null,"url":null,"abstract":"With advancements in the exploration and development of deep and ultra-deep oil and gas resources, the number of ultra-deep wells continues to rise globally. This trend places higher demands on testing technology. The combined perforating and testing technique, an established method for deep and ultra-deep wells, faces challenges. Frequent test operation failures due to perforation detonation failure increase down-hole complexity, restricting the timeliness of testing operations. Current methods use mechanical calibration software to calculate the minimum safety factor of the tubing string for safety assessments. However, without a thorough understanding of perforation detonation failure theory, existing mechanical analysis software remains unreliable for assessing well safety during operations. Simply using the safety factor method lacks reliability and cannot explain the causes of perforation detonation failure. This paper examines an ultra-deep well, referred to as TW1, to analyze perforation detonation failure mechanisms. Through metal microstructure examinations, chemical composition analysis, electron microscope scanning, and numerical simulation, the study yields the following insights: (1) The packer mandrel of Well TW1 fractured due to overstress from the detonation waves. (2) Detonation wave propagation patterns along the tubing string during perforation become apparent. (3) Simulation methods reconstruct the perforation detonation process, calculating effective stress at different tubing string positions over time. (4) It introduces an innovative approach for assessing perforation detonation failure mechanisms through a combination of laboratory testing and simulation modeling.","PeriodicalId":20597,"journal":{"name":"Processes","volume":"185 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/pr12091971","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With advancements in the exploration and development of deep and ultra-deep oil and gas resources, the number of ultra-deep wells continues to rise globally. This trend places higher demands on testing technology. The combined perforating and testing technique, an established method for deep and ultra-deep wells, faces challenges. Frequent test operation failures due to perforation detonation failure increase down-hole complexity, restricting the timeliness of testing operations. Current methods use mechanical calibration software to calculate the minimum safety factor of the tubing string for safety assessments. However, without a thorough understanding of perforation detonation failure theory, existing mechanical analysis software remains unreliable for assessing well safety during operations. Simply using the safety factor method lacks reliability and cannot explain the causes of perforation detonation failure. This paper examines an ultra-deep well, referred to as TW1, to analyze perforation detonation failure mechanisms. Through metal microstructure examinations, chemical composition analysis, electron microscope scanning, and numerical simulation, the study yields the following insights: (1) The packer mandrel of Well TW1 fractured due to overstress from the detonation waves. (2) Detonation wave propagation patterns along the tubing string during perforation become apparent. (3) Simulation methods reconstruct the perforation detonation process, calculating effective stress at different tubing string positions over time. (4) It introduces an innovative approach for assessing perforation detonation failure mechanisms through a combination of laboratory testing and simulation modeling.
期刊介绍:
Processes (ISSN 2227-9717) provides an advanced forum for process related research in chemistry, biology and allied engineering fields. The journal publishes regular research papers, communications, letters, short notes and reviews. Our aim is to encourage researchers to publish their experimental, theoretical and computational results in as much detail as necessary. There is no restriction on paper length or number of figures and tables.