Evaluating Four Methods for Detecting Differential Item Functioning in Large-Scale Assessments with More Than Two Groups

Dandan Chen Kaptur, Jinming Zhang
{"title":"Evaluating Four Methods for Detecting Differential Item Functioning in Large-Scale Assessments with More Than Two Groups","authors":"Dandan Chen Kaptur, Jinming Zhang","doi":"arxiv-2408.11922","DOIUrl":null,"url":null,"abstract":"This study evaluated four multi-group differential item functioning (DIF)\nmethods (the root mean square deviation approach, Wald-1, generalized logistic\nregression procedure, and generalized Mantel-Haenszel method) via Monte Carlo\nsimulation of controlled testing conditions. These conditions varied in the\nnumber of groups, the ability and sample size of the DIF-contaminated group,\nthe parameter associated with DIF, and the proportion of DIF items. When\ncomparing Type-I error rates and powers of the methods, we showed that the RMSD\napproach yielded the best Type-I error rates when it was used with\nmodel-predicted cutoff values. Also, this approach was found to be overly\nconservative when used with the commonly used cutoff value of 0.1. Implications\nfor future research for educational researchers and practitioners were\ndiscussed.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluated four multi-group differential item functioning (DIF) methods (the root mean square deviation approach, Wald-1, generalized logistic regression procedure, and generalized Mantel-Haenszel method) via Monte Carlo simulation of controlled testing conditions. These conditions varied in the number of groups, the ability and sample size of the DIF-contaminated group, the parameter associated with DIF, and the proportion of DIF items. When comparing Type-I error rates and powers of the methods, we showed that the RMSD approach yielded the best Type-I error rates when it was used with model-predicted cutoff values. Also, this approach was found to be overly conservative when used with the commonly used cutoff value of 0.1. Implications for future research for educational researchers and practitioners were discussed.
评估在有两个以上组别的大规模评估中检测项目功能差异的四种方法
本研究通过蒙特卡洛模拟受控测试条件,评估了四种多组差异项目功能(DIF)方法(均方根偏差法、Wald-1、广义逻辑回归程序和广义曼特尔-海恩泽尔法)。这些条件在组数、DIF 污染组的能力和样本量、与 DIF 相关的参数以及 DIF 项目比例等方面各不相同。在比较各种方法的 Type-I 误差率和功率时,我们发现 RMSD 方法在使用模型预测的截止值时,Type-I 误差率最高。此外,我们还发现这种方法在使用常用的 0.1 临界值时过于保守。我们还讨论了未来研究对教育研究人员和从业人员的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信