Investigating Ionic Diffusivity in Amorphous Solid Electrolytes using Machine Learned Interatomic Potentials

Aqshat Seth, Rutvij Pankaj Kulkarni, Gopalakrishnan Sai Gautam
{"title":"Investigating Ionic Diffusivity in Amorphous Solid Electrolytes using Machine Learned Interatomic Potentials","authors":"Aqshat Seth, Rutvij Pankaj Kulkarni, Gopalakrishnan Sai Gautam","doi":"arxiv-2409.06242","DOIUrl":null,"url":null,"abstract":"Investigating Li$^+$ transport within the amorphous lithium phosphorous\noxynitride (LiPON) framework, especially across a Li||LiPON interface, has\nproven challenging due to its amorphous nature and varying stoichiometry,\nnecessitating large supercells and long timescales for computational models.\nNotably, machine learned interatomic potentials (MLIPs) can combine the\ncomputational speed of classical force fields with the accuracy of density\nfunctional theory (DFT), making them the ideal tool for modelling such\namorphous materials. Thus, in this work, we train and validate the neural\nequivariant Interatomic potential (NequIP) framework on a comprehensive\nDFT-based dataset consisting of 13,454 chemically relevant structures to\ndescribe LiPON. With an optimized training (validation) energy and force mean\nabsolute errors of 5.5 (6.1) meV/atom and 13.6 (13.2) meV/{\\AA}, respectively,\nwe employ the trained potential in model Li-transport in both bulk LiPON and\nacross a Li||LiPON interface. Amorphous LiPON structures generated by the\noptimized potential do resemble those generated by ab initio molecular\ndynamics, with N being incorporated on non-bridging apical and bridging sites.\nSubsequent analysis of Li$^+$ diffusivity in the bulk LiPON structures\nindicates broad agreement with computational and experimental literature so\nfar. Further, we investigate the anisotropy in Li$^+$ transport across the\nLi(110)||LiPON interface, where we observe Li-transport across the interface to\nbe one order-of-magnitude slower than Li-motion within the bulk Li and LiPON\nphases. Nevertheless, we note that this anisotropy of Li-transport across the\ninterface is minor and do not expect it to cause any significant impedance\nbuildup. Finally, our work highlights the efficiency of MLIPs in enabling\nhigh-fidelity modelling of complex non-crystalline systems over large length\nand time scales.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Investigating Li$^+$ transport within the amorphous lithium phosphorous oxynitride (LiPON) framework, especially across a Li||LiPON interface, has proven challenging due to its amorphous nature and varying stoichiometry, necessitating large supercells and long timescales for computational models. Notably, machine learned interatomic potentials (MLIPs) can combine the computational speed of classical force fields with the accuracy of density functional theory (DFT), making them the ideal tool for modelling such amorphous materials. Thus, in this work, we train and validate the neural equivariant Interatomic potential (NequIP) framework on a comprehensive DFT-based dataset consisting of 13,454 chemically relevant structures to describe LiPON. With an optimized training (validation) energy and force mean absolute errors of 5.5 (6.1) meV/atom and 13.6 (13.2) meV/{\AA}, respectively, we employ the trained potential in model Li-transport in both bulk LiPON and across a Li||LiPON interface. Amorphous LiPON structures generated by the optimized potential do resemble those generated by ab initio molecular dynamics, with N being incorporated on non-bridging apical and bridging sites. Subsequent analysis of Li$^+$ diffusivity in the bulk LiPON structures indicates broad agreement with computational and experimental literature so far. Further, we investigate the anisotropy in Li$^+$ transport across the Li(110)||LiPON interface, where we observe Li-transport across the interface to be one order-of-magnitude slower than Li-motion within the bulk Li and LiPON phases. Nevertheless, we note that this anisotropy of Li-transport across the interface is minor and do not expect it to cause any significant impedance buildup. Finally, our work highlights the efficiency of MLIPs in enabling high-fidelity modelling of complex non-crystalline systems over large length and time scales.
利用机器学习原子间位势研究无定形固体电解质中的离子扩散性
研究非晶态磷氧化锂(LiPON)框架内的锂$^+$输运,特别是跨Li||LiPON界面的输运,由于其非晶态性质和不同的化学计量,需要大型超单元和长时间尺度的计算模型,因此具有挑战性。值得注意的是,机器学习原子间势(MLIPs)可以将经典力场的计算速度与密度函数理论(DFT)的精确性结合起来,使其成为此类非晶材料建模的理想工具。因此,在这项工作中,我们在一个基于 DFT 的综合数据集上训练和验证了神经权变原子间势(NequIP)框架,该数据集由 13,454 个化学相关结构组成,用于描述 LiPON。经过优化的训练(验证)能量和作用力平均绝对误差分别为 5.5 (6.1) meV/atom 和 13.6 (13.2) meV/{AA},我们将训练好的势用于模拟块状 LiPON 和跨 Li||LiPON 界面的锂传输。由优化势生成的无定形 LiPON 结构与由 ab initio 分子动力学生成的无定形 LiPON 结构非常相似,N 被结合在非桥接顶端位点和桥接位点上。此外,我们还研究了 Li$^+$ 在 Li(110)||LiPON 界面上传输的各向异性,我们观察到 Li 在界面上的传输要比 Li 在块体 Li 和 LiPON 相中的运动慢一个数量级。尽管如此,我们注意到这种跨界面锂传输的各向异性是微小的,预计不会造成任何显著的阻抗增大。最后,我们的工作凸显了 MLIPs 在大长度和时间尺度上对复杂非晶系统进行高保真建模的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信