Beyond designer's knowledge: Generating materials design hypotheses via large language models

Quanliang Liu, Maciej P. Polak, So Yeon Kim, MD Al Amin Shuvo, Hrishikesh Shridhar Deodhar, Jeongsoo Han, Dane Morgan, Hyunseok Oh
{"title":"Beyond designer's knowledge: Generating materials design hypotheses via large language models","authors":"Quanliang Liu, Maciej P. Polak, So Yeon Kim, MD Al Amin Shuvo, Hrishikesh Shridhar Deodhar, Jeongsoo Han, Dane Morgan, Hyunseok Oh","doi":"arxiv-2409.06756","DOIUrl":null,"url":null,"abstract":"Materials design often relies on human-generated hypotheses, a process\ninherently limited by cognitive constraints such as knowledge gaps and limited\nability to integrate and extract knowledge implications, particularly when\nmultidisciplinary expertise is required. This work demonstrates that large\nlanguage models (LLMs), coupled with prompt engineering, can effectively\ngenerate non-trivial materials hypotheses by integrating scientific principles\nfrom diverse sources without explicit design guidance by human experts. These\ninclude design ideas for high-entropy alloys with superior cryogenic properties\nand halide solid electrolytes with enhanced ionic conductivity and formability.\nThese design ideas have been experimentally validated in high-impact\npublications in 2023 not available in the LLM training data, demonstrating the\nLLM's ability to generate highly valuable and realizable innovative ideas not\nestablished in the literature. Our approach primarily leverages materials\nsystem charts encoding processing-structure-property relationships, enabling\nmore effective data integration by condensing key information from numerous\npapers, and evaluation and categorization of numerous hypotheses for human\ncognition, both through the LLM. This LLM-driven approach opens the door to new\navenues of artificial intelligence-driven materials discovery by accelerating\ndesign, democratizing innovation, and expanding capabilities beyond the\ndesigner's direct knowledge.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Materials design often relies on human-generated hypotheses, a process inherently limited by cognitive constraints such as knowledge gaps and limited ability to integrate and extract knowledge implications, particularly when multidisciplinary expertise is required. This work demonstrates that large language models (LLMs), coupled with prompt engineering, can effectively generate non-trivial materials hypotheses by integrating scientific principles from diverse sources without explicit design guidance by human experts. These include design ideas for high-entropy alloys with superior cryogenic properties and halide solid electrolytes with enhanced ionic conductivity and formability. These design ideas have been experimentally validated in high-impact publications in 2023 not available in the LLM training data, demonstrating the LLM's ability to generate highly valuable and realizable innovative ideas not established in the literature. Our approach primarily leverages materials system charts encoding processing-structure-property relationships, enabling more effective data integration by condensing key information from numerous papers, and evaluation and categorization of numerous hypotheses for human cognition, both through the LLM. This LLM-driven approach opens the door to new avenues of artificial intelligence-driven materials discovery by accelerating design, democratizing innovation, and expanding capabilities beyond the designer's direct knowledge.
超越设计师的知识:通过大型语言模型生成材料设计假设
材料设计通常依赖于人类生成的假设,而这一过程本身就受到认知限制,例如知识差距以及整合和提取知识含义的能力有限,尤其是在需要多学科专业知识的情况下。这项工作证明,大语言模型(LLM)与及时工程相结合,可以在没有人类专家明确设计指导的情况下,通过整合来自不同来源的科学原理,有效地生成非复杂材料假设。这些设计构想已在 2023 年的高影响力出版物中得到实验验证,而 LLM 的训练数据中却没有这些资料,这证明 LLM 有能力生成文献中未证实的、极具价值且可实现的创新构想。我们的方法主要利用材料系统图编码加工-结构-属性关系,通过浓缩众多论文中的关键信息实现更有效的数据整合,并通过 LLM 对人类认知的众多假设进行评估和分类。这种由 LLM 驱动的方法为人工智能驱动的材料发现打开了新的大门,它加速了设计,使创新民主化,并扩展了设计者直接知识以外的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信