Generative Hierarchical Materials Search

Sherry Yang, Simon Batzner, Ruiqi Gao, Muratahan Aykol, Alexander L. Gaunt, Brendan McMorrow, Danilo J. Rezende, Dale Schuurmans, Igor Mordatch, Ekin D. Cubuk
{"title":"Generative Hierarchical Materials Search","authors":"Sherry Yang, Simon Batzner, Ruiqi Gao, Muratahan Aykol, Alexander L. Gaunt, Brendan McMorrow, Danilo J. Rezende, Dale Schuurmans, Igor Mordatch, Ekin D. Cubuk","doi":"arxiv-2409.06762","DOIUrl":null,"url":null,"abstract":"Generative models trained at scale can now produce text, video, and more\nrecently, scientific data such as crystal structures. In applications of\ngenerative approaches to materials science, and in particular to crystal\nstructures, the guidance from the domain expert in the form of high-level\ninstructions can be essential for an automated system to output candidate\ncrystals that are viable for downstream research. In this work, we formulate\nend-to-end language-to-structure generation as a multi-objective optimization\nproblem, and propose Generative Hierarchical Materials Search (GenMS) for\ncontrollable generation of crystal structures. GenMS consists of (1) a language\nmodel that takes high-level natural language as input and generates\nintermediate textual information about a crystal (e.g., chemical formulae), and\n(2) a diffusion model that takes intermediate information as input and\ngenerates low-level continuous value crystal structures. GenMS additionally\nuses a graph neural network to predict properties (e.g., formation energy) from\nthe generated crystal structures. During inference, GenMS leverages all three\ncomponents to conduct a forward tree search over the space of possible\nstructures. Experiments show that GenMS outperforms other alternatives of\ndirectly using language models to generate structures both in satisfying user\nrequest and in generating low-energy structures. We confirm that GenMS is able\nto generate common crystal structures such as double perovskites, or spinels,\nsolely from natural language input, and hence can form the foundation for more\ncomplex structure generation in near future.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generative models trained at scale can now produce text, video, and more recently, scientific data such as crystal structures. In applications of generative approaches to materials science, and in particular to crystal structures, the guidance from the domain expert in the form of high-level instructions can be essential for an automated system to output candidate crystals that are viable for downstream research. In this work, we formulate end-to-end language-to-structure generation as a multi-objective optimization problem, and propose Generative Hierarchical Materials Search (GenMS) for controllable generation of crystal structures. GenMS consists of (1) a language model that takes high-level natural language as input and generates intermediate textual information about a crystal (e.g., chemical formulae), and (2) a diffusion model that takes intermediate information as input and generates low-level continuous value crystal structures. GenMS additionally uses a graph neural network to predict properties (e.g., formation energy) from the generated crystal structures. During inference, GenMS leverages all three components to conduct a forward tree search over the space of possible structures. Experiments show that GenMS outperforms other alternatives of directly using language models to generate structures both in satisfying user request and in generating low-energy structures. We confirm that GenMS is able to generate common crystal structures such as double perovskites, or spinels, solely from natural language input, and hence can form the foundation for more complex structure generation in near future.
生成式分层材料搜索
经过大规模训练的生成模型现在可以生成文本、视频,最近还可以生成晶体结构等科学数据。在将生成方法应用于材料科学,特别是晶体结构时,领域专家以高级指令形式提供的指导对于自动系统输出可用于下游研究的候选晶体至关重要。在这项工作中,我们将端到端语言到结构的生成表述为一个多目标优化问题,并提出了用于可控晶体结构生成的生成式分层材料搜索(GenMS)。GenMS 包括:(1)一个语言模型,将高级自然语言作为输入,生成晶体的中间文本信息(如化学式);(2)一个扩散模型,将中间信息作为输入,生成低级连续值晶体结构。此外,GenMS 还利用图神经网络从生成的晶体结构中预测属性(如形成能)。在推理过程中,GenMS 利用所有三个组件对可能的结构空间进行前向树状搜索。实验表明,无论是在满足用户需求方面,还是在生成低能结构方面,GenMS都优于其他直接使用语言模型生成结构的方法。我们证实,GenMS能够仅通过自然语言输入生成常见的晶体结构,如双包晶或尖晶石,从而为不久的将来生成更复杂的结构奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信