On reduced spherical bodies

Michał Musielak
{"title":"On reduced spherical bodies","authors":"Michał Musielak","doi":"arxiv-2409.07036","DOIUrl":null,"url":null,"abstract":"This thesis consists of five papers about reduced spherical convex bodies and\nin particular spherical bodies of constant width on the $d$-dimensional sphere\n$S^d$. In paper I we present some facts describing the shape of reduced bodies\nof thickness under $\\frac{\\pi}{2}$ on $S^2$. We also consider reduced bodies of\nthickness at least $\\frac{\\pi}{2}$, which appear to be of constant width. Paper\nII focuses on bodies of constant width on $S^d$. We present the properties of\nthese bodies and in particular we discuss conections between notions of\nconstant width and of constant diameter. In paper III we estimate the diameter\nof a reduced convex body. The main theme of paper IV is estimating the radius\nof the smallest disk that covers a reduced convex body on $S^2$. The result of\npaper V is showing that every spherical reduced polygon $V$ is contained in a\ndisk of radius equal to the thickness of this body centered at a boundary point\nof $V$.","PeriodicalId":501444,"journal":{"name":"arXiv - MATH - Metric Geometry","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Metric Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This thesis consists of five papers about reduced spherical convex bodies and in particular spherical bodies of constant width on the $d$-dimensional sphere $S^d$. In paper I we present some facts describing the shape of reduced bodies of thickness under $\frac{\pi}{2}$ on $S^2$. We also consider reduced bodies of thickness at least $\frac{\pi}{2}$, which appear to be of constant width. Paper II focuses on bodies of constant width on $S^d$. We present the properties of these bodies and in particular we discuss conections between notions of constant width and of constant diameter. In paper III we estimate the diameter of a reduced convex body. The main theme of paper IV is estimating the radius of the smallest disk that covers a reduced convex body on $S^2$. The result of paper V is showing that every spherical reduced polygon $V$ is contained in a disk of radius equal to the thickness of this body centered at a boundary point of $V$.
关于还原球体
本论文由五篇论文组成,涉及还原球形凸体,特别是 $d$ 维球面$S^d$上的恒宽球形体。在论文 I 中,我们提出了一些描述在 $S^2$ 上 $\frac{\pi}{2}$ 下厚度减小体形状的事实。我们还考虑了厚度至少为 $\frac{pi}{2}$ 的还原体,它们看起来宽度不变。论文二的重点是$S^d$上的恒宽体。我们介绍了这些体的性质,特别是讨论了恒定宽度与恒定直径概念之间的联系。在论文 III 中,我们估计了还原凸体的直径。论文 IV 的主题是估计覆盖 $S^2$ 上还原凸体的最小圆盘的半径。论文 V 的结果表明,每一个球形还原多边形 $V$ 都包含在以 $V$ 边界点为中心的半径等于该体厚度的圆盘中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信