Connecting real and hyperarithmetical analysis

Sam Sanders
{"title":"Connecting real and hyperarithmetical analysis","authors":"Sam Sanders","doi":"arxiv-2408.13760","DOIUrl":null,"url":null,"abstract":"Going back to Kreisel in the Sixties, hyperarithmetical analysis is a cluster\nof logical systems just beyond arithmetical comprehension. Only recently\nnatural examples of theorems from the mathematical mainstream were identified\nthat fit this category. In this paper, we provide many examples of theorems of\nreal analysis that sit within the range of hyperarithmetical analysis, namely\nbetween the higher-order version of $\\Sigma_1^1$-AC$_0$ and\nweak-$\\Sigma_1^1$-AC$_0$, working in Kohlenbach's higher-order framework. Our\nexample theorems are based on the Jordan decomposition theorem, unordered sums,\nmetric spaces, and semi-continuous functions. Along the way, we identify a\ncouple of new systems of hyperarithmetical analysis.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Going back to Kreisel in the Sixties, hyperarithmetical analysis is a cluster of logical systems just beyond arithmetical comprehension. Only recently natural examples of theorems from the mathematical mainstream were identified that fit this category. In this paper, we provide many examples of theorems of real analysis that sit within the range of hyperarithmetical analysis, namely between the higher-order version of $\Sigma_1^1$-AC$_0$ and weak-$\Sigma_1^1$-AC$_0$, working in Kohlenbach's higher-order framework. Our example theorems are based on the Jordan decomposition theorem, unordered sums, metric spaces, and semi-continuous functions. Along the way, we identify a couple of new systems of hyperarithmetical analysis.
连接实分析和超数学分析
追溯到六十年代的 Kreisel,超算术分析是一组超出算术理解范围的逻辑系统。直到最近,人们才从数学主流定理中发现了符合这一范畴的自然实例。在本文中,我们提供了许多在超算术分析范围内的实分析定理的例子,即介于$\Sigma_1^1$-AC$_0$的高阶版本和弱\Sigma_1^1$-AC$_0$之间,在科伦巴赫的高阶框架内工作。这些示例定理基于乔丹分解定理、无序和、度量空间和半连续函数。在此过程中,我们发现了一些新的超算术分析系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信