Limit Groups and Automorphisms of $κ$-Existentially Closed Groups

Burak Kaya, Mahmut Kuzucuoğlu, Patrizia Longobardi, Mercede Maj
{"title":"Limit Groups and Automorphisms of $κ$-Existentially Closed Groups","authors":"Burak Kaya, Mahmut Kuzucuoğlu, Patrizia Longobardi, Mercede Maj","doi":"arxiv-2409.00545","DOIUrl":null,"url":null,"abstract":"The structure of automorphism groups of $\\kappa$-existentially closed groups\nare studied by Kaya-Kuzucuo\\u{g}lu in 2022. It was proved that Aut(G) is the union of subgroups of level preserving\nautomorphisms and $|Aut(G)|=2^\\kappa$ whenever $\\kappa$ is an inaccessible cardinal and $G$ is the unique $\\kappa$-existentially closed group of cardinality $\\kappa$. The cardinality of the automorphism group of a\n$\\kappa$-existentially closed group of cardinality $\\lambda>\\kappa$ is asked in Kourovka Notebook\nQuestion 20.40. Here we answer positively the promised case $\\kappa=\\lambda$ namely: If $G$ is a $\\kappa$-existentially closed group of cardinality $\\kappa$, then $|Aut(G)|=2^{\\kappa}$. We also answer Kegel's question on universal groups, namely: For any uncountable cardinal $\\kappa$, there exist universal groups of cardinality $\\kappa$.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The structure of automorphism groups of $\kappa$-existentially closed groups are studied by Kaya-Kuzucuo\u{g}lu in 2022. It was proved that Aut(G) is the union of subgroups of level preserving automorphisms and $|Aut(G)|=2^\kappa$ whenever $\kappa$ is an inaccessible cardinal and $G$ is the unique $\kappa$-existentially closed group of cardinality $\kappa$. The cardinality of the automorphism group of a $\kappa$-existentially closed group of cardinality $\lambda>\kappa$ is asked in Kourovka Notebook Question 20.40. Here we answer positively the promised case $\kappa=\lambda$ namely: If $G$ is a $\kappa$-existentially closed group of cardinality $\kappa$, then $|Aut(G)|=2^{\kappa}$. We also answer Kegel's question on universal groups, namely: For any uncountable cardinal $\kappa$, there exist universal groups of cardinality $\kappa$.
κ$-存在封闭群的极限群和自动形
Kaya-Kuzucuo\u{g}lu 在 2022 年研究了$\kappa$-存在封闭群的自变群结构。研究证明,Aut(G)是保留自变量的级子群的联合,并且当$\kappa$是不可访问的心数且$G$是心数为$\kappa$的唯一的$\kappa$-存在封闭群时,$|Aut(G)|=2^\kappa$。在库洛夫卡笔记本问题 20.40 中提出了心性为 $\lambda>\kappa$ 的 $\kappa$-existentially closed group 的自变群的心性问题。在此,我们对承诺的$\kappa=\lambda$情况作正面回答:如果$G$是一个心性为$\kappa$的存在封闭群,那么$|Aut(G)|=2^{\kappa}$。我们还回答了凯格尔关于普遍群的问题,即对于任何不可数的心数 $\kappa$, 都存在心数为 $\kappa$ 的普遍群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信