Formalising inductive and coinductive containers

Stefania Damato, Thorsten Altenkirch, Axel Ljungström
{"title":"Formalising inductive and coinductive containers","authors":"Stefania Damato, Thorsten Altenkirch, Axel Ljungström","doi":"arxiv-2409.02603","DOIUrl":null,"url":null,"abstract":"Containers capture the concept of strictly positive data types in\nprogramming. The original development of containers is done in the internal\nlanguage of Locally Cartesian Closed Categories (LCCCs) with disjoint\ncoproducts and W-types. Although it is claimed that these developments can also\nbe interpreted in extensional Martin-L\\\"of type theory, this interpretation is\nnot made explicit. Moreover, as a result of extensionality, these developments\nfreely assume Uniqueness of Identity Proofs (UIP), so it is not clear whether\nthis is a necessary condition. In this paper, we present a formalisation of the\nresult that `containers preserve least and greatest fixed points' in Cubical\nAgda, thereby giving a formulation in intensional type theory, and showing that\nUIP is not necessary. Our main incentive for using Cubical Agda is that its\npath type restores the equivalence between bisimulation and coinductive\nequality. Thus, besides developing container theory in a more general setting,\nwe also demonstrate the usefulness of Cubical Agda's path type to coinductive\nproofs.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Containers capture the concept of strictly positive data types in programming. The original development of containers is done in the internal language of Locally Cartesian Closed Categories (LCCCs) with disjoint coproducts and W-types. Although it is claimed that these developments can also be interpreted in extensional Martin-L\"of type theory, this interpretation is not made explicit. Moreover, as a result of extensionality, these developments freely assume Uniqueness of Identity Proofs (UIP), so it is not clear whether this is a necessary condition. In this paper, we present a formalisation of the result that `containers preserve least and greatest fixed points' in Cubical Agda, thereby giving a formulation in intensional type theory, and showing that UIP is not necessary. Our main incentive for using Cubical Agda is that its path type restores the equivalence between bisimulation and coinductive equality. Thus, besides developing container theory in a more general setting, we also demonstrate the usefulness of Cubical Agda's path type to coinductive proofs.
将归纳和共生容器形式化
容器捕捉了编程中严格正向数据类型的概念。容器的最初发展是在本地笛卡尔封闭范畴(Locally Cartesian Closed Categories,LCCCs)的内部语言中完成的,带有不相交的乘积(disjointcoproducts)和 W 类型。尽管有人声称,这些发展也可以用类型理论的扩展马丁-路德来解释,但这种解释并没有明示。此外,作为扩展性的结果,这些发展自由地假定了同一性证明(UIP)的唯一性,因此这是否是一个必要条件还不清楚。在本文中,我们提出了立方Agda中 "容器保留最小和最大定点 "这一结果的形式化,从而给出了内维类型理论的表述,并证明了UIP并非必要条件。我们使用立方阿格达的主要动机是,它的路径类型恢复了二嵌和共导不等式之间的等价性。因此,除了在更一般的环境中发展容器理论外,我们还证明了 Cubical Agda 的路径类型对共推证明的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信