On the Various Translations between Classical, Intuitionistic and Linear Logic

Gilda Ferreira, Paulo Oliva, Clarence Lewis Protin
{"title":"On the Various Translations between Classical, Intuitionistic and Linear Logic","authors":"Gilda Ferreira, Paulo Oliva, Clarence Lewis Protin","doi":"arxiv-2409.02249","DOIUrl":null,"url":null,"abstract":"Several different proof translations exist between classical and\nintuitionistic logic (negative translations), and intuitionistic and linear\nlogic (Girard translations). Our aims in this paper are (1) to show that all\nthese systems can be expressed as extensions of a basic logical system\n(essentially intuitionistic linear logic), and that (2) with this common\nlogical basis, a common approach to devising and simplifying such proof\ntranslations can be formalised. Via this process of ``simplification'' we get\nthe most well-known translations in the literature.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Several different proof translations exist between classical and intuitionistic logic (negative translations), and intuitionistic and linear logic (Girard translations). Our aims in this paper are (1) to show that all these systems can be expressed as extensions of a basic logical system (essentially intuitionistic linear logic), and that (2) with this common logical basis, a common approach to devising and simplifying such proof translations can be formalised. Via this process of ``simplification'' we get the most well-known translations in the literature.
论古典逻辑、直觉逻辑和线性逻辑之间的各种转换
在经典逻辑与直觉主义逻辑(否定翻译)之间,以及直觉主义逻辑与线性逻辑(吉拉德翻译)之间,存在着几种不同的证明翻译。我们在本文中的目的是:(1)证明所有这些系统都可以表达为一个基本逻辑系统(本质上是直觉线性逻辑)的扩展;(2)有了这个共同的逻辑基础,就可以形式化出一种设计和简化这种证明翻译的共同方法。通过这一 "简化 "过程,我们得到了文献中最著名的翻译。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信