Asymptotic dimension and hyperfiniteness of generic Cantor actions

Sumun Iyer, Forte Shinko
{"title":"Asymptotic dimension and hyperfiniteness of generic Cantor actions","authors":"Sumun Iyer, Forte Shinko","doi":"arxiv-2409.03078","DOIUrl":null,"url":null,"abstract":"We show that for a countable discrete group which is locally of finite\nasymptotic dimension, the generic continuous action on Cantor space has\nhyperfinite orbit equivalence relation. In particular, this holds for free\ngroups, answering a question of Frisch-Kechris-Shinko-Vidny\\'anszky.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that for a countable discrete group which is locally of finite asymptotic dimension, the generic continuous action on Cantor space has hyperfinite orbit equivalence relation. In particular, this holds for free groups, answering a question of Frisch-Kechris-Shinko-Vidny\'anszky.
一般康托尔行动的渐近维度和超有限性
我们证明,对于局部具有有限渐近维度的可数离散群,康托空间上的泛函连续作用具有超无限轨道等价关系。这尤其适用于自由群,回答了弗里施-凯奇里斯-新科-维德尼/'anszky 的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信