The Kaufmann--Clote question on end extensions of models of arithmetic and the weak regularity principle

Mengzhou Sun
{"title":"The Kaufmann--Clote question on end extensions of models of arithmetic and the weak regularity principle","authors":"Mengzhou Sun","doi":"arxiv-2409.03527","DOIUrl":null,"url":null,"abstract":"We investigate the end extendibility of models of arithmetic with restricted\nelementarity. By utilizing the restricted ultrapower construction in the\nsecond-order context, for each $n\\in\\mathbb{N}$ and any countable model of\n$\\mathrm{B}\\Sigma_{n+2}$, we construct a proper $\\Sigma_{n+2}$-elementary end\nextension satisfying $\\mathrm{B}\\Sigma_{n+1}$, which answers a question by\nClote positively. We also give a characterization of countable models of\n$\\mathrm{I}\\Sigma_{n+2}$ in terms of their end extendibility similar to the\ncase of $\\mathrm{B}\\Sigma_{n+2}$. Along the proof, we will introduce a new type\nof regularity principles in arithmetic called the weak regularity principle,\nwhich serves as a bridge between the model's end extendibility and the amount\nof induction or collection it satisfies.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the end extendibility of models of arithmetic with restricted elementarity. By utilizing the restricted ultrapower construction in the second-order context, for each $n\in\mathbb{N}$ and any countable model of $\mathrm{B}\Sigma_{n+2}$, we construct a proper $\Sigma_{n+2}$-elementary end extension satisfying $\mathrm{B}\Sigma_{n+1}$, which answers a question by Clote positively. We also give a characterization of countable models of $\mathrm{I}\Sigma_{n+2}$ in terms of their end extendibility similar to the case of $\mathrm{B}\Sigma_{n+2}$. Along the proof, we will introduce a new type of regularity principles in arithmetic called the weak regularity principle, which serves as a bridge between the model's end extendibility and the amount of induction or collection it satisfies.
关于算术模型末端扩展的考夫曼--克洛特问题和弱正则原则
我们研究了具有限制元素性的算术模型的末端可扩展性。通过在这些二阶上下文中利用受限超幂构造,对于每个 $n\in\mathbb{N}$ 和 $\mathrm{B}\Sigma_{n+2}$ 的任何可数模型,我们构造了一个满足 $\mathrm{B}\Sigma_{n+1}$ 的适当 $\Sigma_{n+2}$ 元末扩展,这正面回答了克洛特提出的一个问题。我们还给出了$\mathrm{I}\Sigma_{n+2}$的可数模型的特征,即它们的末端可扩展性类似于$\mathrm{B}\Sigma_{n+2}$的情况。在证明的过程中,我们将引入算术中一种新的正则原则,称为弱正则原则,它是模型的末端可扩展性与它所满足的归纳或集合量之间的桥梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信