{"title":"The Euler-Lagrange equations of nabla derivatives for variational approach to optimization problems on time scales","authors":"Jie Bai, Zhijun Zeng","doi":"10.1186/s13662-024-03832-5","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the variational approach using nabla (denoted as ∇) within the framework of time scales. By employing two different methods, we derive the Euler-Lagrange equations for first-order variational approach to optimization problems involving exponential functions, as well as for those with both exponential functions and their ∇-derivatives. To establish the high-order variational approach to optimization problem, we present the Leibniz Formula for ∇-derivatives along with its proof. Additionally, we determine the high-order variational approach to optimization problem incorporating ∇-derivatives of exponential functions. Through these analyses, we aim to contribute to the understanding and application of the variational calculus on time scales, offering insights into the behavior of dynamic systems governed by exponential functions and their derivatives.</p>","PeriodicalId":49245,"journal":{"name":"Advances in Difference Equations","volume":"8 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-024-03832-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the variational approach using nabla (denoted as ∇) within the framework of time scales. By employing two different methods, we derive the Euler-Lagrange equations for first-order variational approach to optimization problems involving exponential functions, as well as for those with both exponential functions and their ∇-derivatives. To establish the high-order variational approach to optimization problem, we present the Leibniz Formula for ∇-derivatives along with its proof. Additionally, we determine the high-order variational approach to optimization problem incorporating ∇-derivatives of exponential functions. Through these analyses, we aim to contribute to the understanding and application of the variational calculus on time scales, offering insights into the behavior of dynamic systems governed by exponential functions and their derivatives.
期刊介绍:
The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions.
The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between.
The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations.
Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.