{"title":"Dynamic analysis and optimal control of a mosquito-borne infectious disease model under the influence of biodiversity dilution effect","authors":"Zongmin Yue, Yingpan Zhang","doi":"10.1186/s13662-024-03824-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, biodiversity and a saturation treatment rate are introduced into a type of mosquito-borne infectious disease model with an incubation time delay. Through the dynamical analysis of the model, conditions for the existence and stability of disease-free and endemic equilibria are determined. The basic reproduction number of the model is calculated, and the condition for the existence of backward bifurcation is outlined. The study finds that under the dual influence of biodiversity and saturation treatment, the threshold characteristic of the basic reproduction number becomes invalidated. When <span>\\(R_{0}\\)</span> is less than 1, the model may exhibit four equilibrium states, with both the disease-free equilibrium and the endemic equilibrium being locally stable. In this scenario, whether the virus will become extinct depends on the initial conditions. The study also finds that when the basic reproduction number <span>\\(R_{0}\\)</span> is greater than 1, the stability of the model is influenced by the time delay, with Hopf bifurcation occurring at a specific time delay. In addition, another novel contribution of this paper is the formulation of an optimal control problem that takes into account the minimization of damage caused by humans to biodiversity. Based on the Pontryagin’s maximum principle, the specific characteristics of the optimal control measures are given, and the optimal strategy is derived by comparing five groups of control strategies. The optimal control results highlight the synergistic effect of multiple control measures with biodiversity. Under optimal control, a significant complementary effect between medical inputs and the dilution effect of biodiversity is evident. The findings imply that maintaining high biodiversity levels can decrease the demand for medical resources in mosquito-borne disease control efforts.</p>","PeriodicalId":49245,"journal":{"name":"Advances in Difference Equations","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-024-03824-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, biodiversity and a saturation treatment rate are introduced into a type of mosquito-borne infectious disease model with an incubation time delay. Through the dynamical analysis of the model, conditions for the existence and stability of disease-free and endemic equilibria are determined. The basic reproduction number of the model is calculated, and the condition for the existence of backward bifurcation is outlined. The study finds that under the dual influence of biodiversity and saturation treatment, the threshold characteristic of the basic reproduction number becomes invalidated. When \(R_{0}\) is less than 1, the model may exhibit four equilibrium states, with both the disease-free equilibrium and the endemic equilibrium being locally stable. In this scenario, whether the virus will become extinct depends on the initial conditions. The study also finds that when the basic reproduction number \(R_{0}\) is greater than 1, the stability of the model is influenced by the time delay, with Hopf bifurcation occurring at a specific time delay. In addition, another novel contribution of this paper is the formulation of an optimal control problem that takes into account the minimization of damage caused by humans to biodiversity. Based on the Pontryagin’s maximum principle, the specific characteristics of the optimal control measures are given, and the optimal strategy is derived by comparing five groups of control strategies. The optimal control results highlight the synergistic effect of multiple control measures with biodiversity. Under optimal control, a significant complementary effect between medical inputs and the dilution effect of biodiversity is evident. The findings imply that maintaining high biodiversity levels can decrease the demand for medical resources in mosquito-borne disease control efforts.
期刊介绍:
The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions.
The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between.
The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations.
Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.