Visual Grounding with Multi-modal Conditional Adaptation

Ruilin Yao, Shengwu Xiong, Yichen Zhao, Yi Rong
{"title":"Visual Grounding with Multi-modal Conditional Adaptation","authors":"Ruilin Yao, Shengwu Xiong, Yichen Zhao, Yi Rong","doi":"arxiv-2409.04999","DOIUrl":null,"url":null,"abstract":"Visual grounding is the task of locating objects specified by natural\nlanguage expressions. Existing methods extend generic object detection\nframeworks to tackle this task. They typically extract visual and textual\nfeatures separately using independent visual and textual encoders, then fuse\nthese features in a multi-modal decoder for final prediction. However, visual\ngrounding presents unique challenges. It often involves locating objects with\ndifferent text descriptions within the same image. Existing methods struggle\nwith this task because the independent visual encoder produces identical visual\nfeatures for the same image, limiting detection performance. Some recently\napproaches propose various language-guided visual encoders to address this\nissue, but they mostly rely solely on textual information and require\nsophisticated designs. In this paper, we introduce Multi-modal Conditional\nAdaptation (MMCA), which enables the visual encoder to adaptively update\nweights, directing its focus towards text-relevant regions. Specifically, we\nfirst integrate information from different modalities to obtain multi-modal\nembeddings. Then we utilize a set of weighting coefficients, which generated\nfrom the multimodal embeddings, to reorganize the weight update matrices and\napply them to the visual encoder of the visual grounding model. Extensive\nexperiments on four widely used datasets demonstrate that MMCA achieves\nsignificant improvements and state-of-the-art results. Ablation experiments\nfurther demonstrate the lightweight and efficiency of our method. Our source\ncode is available at: https://github.com/Mr-Bigworth/MMCA.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visual grounding is the task of locating objects specified by natural language expressions. Existing methods extend generic object detection frameworks to tackle this task. They typically extract visual and textual features separately using independent visual and textual encoders, then fuse these features in a multi-modal decoder for final prediction. However, visual grounding presents unique challenges. It often involves locating objects with different text descriptions within the same image. Existing methods struggle with this task because the independent visual encoder produces identical visual features for the same image, limiting detection performance. Some recently approaches propose various language-guided visual encoders to address this issue, but they mostly rely solely on textual information and require sophisticated designs. In this paper, we introduce Multi-modal Conditional Adaptation (MMCA), which enables the visual encoder to adaptively update weights, directing its focus towards text-relevant regions. Specifically, we first integrate information from different modalities to obtain multi-modal embeddings. Then we utilize a set of weighting coefficients, which generated from the multimodal embeddings, to reorganize the weight update matrices and apply them to the visual encoder of the visual grounding model. Extensive experiments on four widely used datasets demonstrate that MMCA achieves significant improvements and state-of-the-art results. Ablation experiments further demonstrate the lightweight and efficiency of our method. Our source code is available at: https://github.com/Mr-Bigworth/MMCA.
多模式条件适应的视觉基础
可视化接地是通过自然语言表达式定位指定对象的任务。现有方法对通用对象检测框架进行了扩展,以解决这一任务。它们通常使用独立的视觉和文本编码器分别提取视觉和文本特征,然后在多模态解码器中融合这些特征进行最终预测。然而,视觉定位带来了独特的挑战。它通常涉及在同一图像中定位不同文本描述的对象。现有的方法很难完成这项任务,因为独立的视觉编码器会对同一图像产生相同的视觉特征,从而限制了检测性能。最近,一些方法提出了各种语言引导的视觉编码器来解决这个问题,但它们大多只依赖文本信息,需要复杂的设计。在本文中,我们引入了多模态条件适应(Multi-modal ConditionalAdaptation,MMCA),它使视觉编码器能够自适应地更新权重,将重点引向文本相关区域。具体来说,我们首先整合来自不同模态的信息,以获得多模态嵌入。然后,我们利用从多模态嵌入中生成的一组加权系数来重组权重更新矩阵,并将其应用于视觉接地模型的视觉编码器。在四个广泛使用的数据集上进行的大量实验证明,MMCA 取得了显著的改进和最先进的结果。消融实验进一步证明了我们方法的轻便和高效。我们的源代码可在以下网址获取:https://github.com/Mr-Bigworth/MMCA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信