MSMF: Multi-Scale Multi-Modal Fusion for Enhanced Stock Market Prediction

Jiahao Qin
{"title":"MSMF: Multi-Scale Multi-Modal Fusion for Enhanced Stock Market Prediction","authors":"Jiahao Qin","doi":"arxiv-2409.07855","DOIUrl":null,"url":null,"abstract":"This paper presents MSMF (Multi-Scale Multi-Modal Fusion), a novel approach\nfor enhanced stock market prediction. MSMF addresses key challenges in\nmulti-modal stock analysis by integrating a modality completion encoder,\nmulti-scale feature extraction, and an innovative fusion mechanism. Our model\nleverages blank learning and progressive fusion to balance complementarity and\nredundancy across modalities, while multi-scale alignment facilitates direct\ncorrelations between heterogeneous data types. We introduce Multi-Granularity\nGates and a specialized architecture to optimize the integration of local and\nglobal information for different tasks. Additionally, a Task-targeted\nPrediction layer is employed to preserve both coarse and fine-grained features\nduring fusion. Experimental results demonstrate that MSMF outperforms existing\nmethods, achieving significant improvements in accuracy and reducing prediction\nerrors across various stock market forecasting tasks. This research contributes\nvaluable insights to the field of multi-modal financial analysis and offers a\nrobust framework for enhanced market prediction.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents MSMF (Multi-Scale Multi-Modal Fusion), a novel approach for enhanced stock market prediction. MSMF addresses key challenges in multi-modal stock analysis by integrating a modality completion encoder, multi-scale feature extraction, and an innovative fusion mechanism. Our model leverages blank learning and progressive fusion to balance complementarity and redundancy across modalities, while multi-scale alignment facilitates direct correlations between heterogeneous data types. We introduce Multi-Granularity Gates and a specialized architecture to optimize the integration of local and global information for different tasks. Additionally, a Task-targeted Prediction layer is employed to preserve both coarse and fine-grained features during fusion. Experimental results demonstrate that MSMF outperforms existing methods, achieving significant improvements in accuracy and reducing prediction errors across various stock market forecasting tasks. This research contributes valuable insights to the field of multi-modal financial analysis and offers a robust framework for enhanced market prediction.
MSMF:多尺度多模态融合增强股市预测功能
本文介绍了 MSMF(多尺度多模态融合),这是一种用于增强股市预测的新方法。MSMF 通过整合模态完成编码器、多尺度特征提取和创新的融合机制,解决了多模态股票分析中的关键难题。我们的模型利用空白学习和渐进融合来平衡各模态之间的互补性和冗余性,而多尺度对齐则促进了异构数据类型之间的直接关联。我们引入了多粒度门(Multi-GranularityGates)和专门的架构,以优化不同任务的本地和全局信息整合。此外,我们还采用了任务目标预测层,以在融合过程中保留粗粒度和细粒度特征。实验结果表明,MSMF 优于现有方法,在各种股市预测任务中显著提高了准确性并减少了预测误差。这项研究为多模态金融分析领域贡献了宝贵的见解,并为增强市场预测提供了一个稳健的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信