Black hole mergers in holographic space time models of cosmology

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Anish Suresh, Thomas Banks
{"title":"Black hole mergers in holographic space time models of cosmology","authors":"Anish Suresh, Thomas Banks","doi":"10.21468/scipostphyscore.7.3.057","DOIUrl":null,"url":null,"abstract":"Holographic space-time, a theory of quantum gravity that generalizes string theory and quantum field theory, predicts black holes in the early matter-dominated era of its models of inflation. Before these black holes can decay, there is a chance that enough of these particles merge to produce radiation visible today in the Cosmic Microwave background. To discover if this is the case, we perform a rudimentary computer simulation. We show that no problematic black holes are formed by mergers in the Holographic Space-time models of inflation. However, we conclude that tiny bound structures containing black holes remnants form in this theory unconditionally. Since black hole decay products are mostly massive standard model particles, and perhaps their superpartners, the fate of these structures is a complicated dynamical problem that requires further study. It suggests the possibility of primordial structures on the order of the horizon size at the beginning of the radiation dominated era. This is about $10^9 L_P$ in the current model.","PeriodicalId":21682,"journal":{"name":"SciPost Physics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21468/scipostphyscore.7.3.057","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Holographic space-time, a theory of quantum gravity that generalizes string theory and quantum field theory, predicts black holes in the early matter-dominated era of its models of inflation. Before these black holes can decay, there is a chance that enough of these particles merge to produce radiation visible today in the Cosmic Microwave background. To discover if this is the case, we perform a rudimentary computer simulation. We show that no problematic black holes are formed by mergers in the Holographic Space-time models of inflation. However, we conclude that tiny bound structures containing black holes remnants form in this theory unconditionally. Since black hole decay products are mostly massive standard model particles, and perhaps their superpartners, the fate of these structures is a complicated dynamical problem that requires further study. It suggests the possibility of primordial structures on the order of the horizon size at the beginning of the radiation dominated era. This is about $10^9 L_P$ in the current model.
宇宙学全息时空模型中的黑洞合并
全息时空是一种量子引力理论,它概括了弦理论和量子场论,在其暴胀模型中预测了早期物质主导时代的黑洞。在这些黑洞衰变之前,有可能会有足够多的这些粒子合并,从而产生今天在宇宙微波背景中可见的辐射。为了发现是否存在这种情况,我们进行了一次简单的计算机模拟。我们的研究表明,在全息时空膨胀模型中,合并不会形成有问题的黑洞。然而,我们得出结论,在该理论中无条件地形成了包含黑洞残余的微小束缚结构。由于黑洞衰变产物大多是大质量标准模型粒子,也许还有它们的超级伙伴,这些结构的命运是一个复杂的动力学问题,需要进一步研究。它表明,在辐射主导时代开始时,原始结构的大小可能与地平线大小相当。这在当前模型中大约为 10^9 L_P$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SciPost Physics
SciPost Physics Physics and Astronomy-Physics and Astronomy (all)
CiteScore
8.20
自引率
12.70%
发文量
315
审稿时长
10 weeks
期刊介绍: SciPost Physics publishes breakthrough research articles in the whole field of Physics, covering Experimental, Theoretical and Computational approaches. Specialties covered by this Journal: - Atomic, Molecular and Optical Physics - Experiment - Atomic, Molecular and Optical Physics - Theory - Biophysics - Condensed Matter Physics - Experiment - Condensed Matter Physics - Theory - Condensed Matter Physics - Computational - Fluid Dynamics - Gravitation, Cosmology and Astroparticle Physics - High-Energy Physics - Experiment - High-Energy Physics - Theory - High-Energy Physics - Phenomenology - Mathematical Physics - Nuclear Physics - Experiment - Nuclear Physics - Theory - Quantum Physics - Statistical and Soft Matter Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信