An Image-Driven Machine Learning Method for Microstructure Characterization in Metal Additive Manufacturing: Generative Adversarial Network

Z Cao, Y Liu, J J Kruzic, X Li
{"title":"An Image-Driven Machine Learning Method for Microstructure Characterization in Metal Additive Manufacturing: Generative Adversarial Network","authors":"Z Cao, Y Liu, J J Kruzic, X Li","doi":"10.1088/1757-899x/1310/1/012015","DOIUrl":null,"url":null,"abstract":"The recent development of artificial intelligence especially machine learning technology has provided an emerging direction for solving microstructure representation and analysis in additive manufacturing. In this work, we introduce an advanced image-driven machine learning algorithm that offers an effective way to abstract the features in microstructure and generates high-resolution and large-size images that can represent the original counterparts. The evolution of the model and the potential application of the algorithm in material science are also discussed.","PeriodicalId":14483,"journal":{"name":"IOP Conference Series: Materials Science and Engineering","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1757-899x/1310/1/012015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The recent development of artificial intelligence especially machine learning technology has provided an emerging direction for solving microstructure representation and analysis in additive manufacturing. In this work, we introduce an advanced image-driven machine learning algorithm that offers an effective way to abstract the features in microstructure and generates high-resolution and large-size images that can represent the original counterparts. The evolution of the model and the potential application of the algorithm in material science are also discussed.
用于金属增材制造微结构表征的图像驱动机器学习方法:生成式对抗网络
近年来,人工智能尤其是机器学习技术的发展为解决增材制造中的微观结构表示和分析问题提供了一个新兴方向。在这项工作中,我们介绍了一种先进的图像驱动机器学习算法,它提供了一种有效的方法来抽象微观结构中的特征,并生成能代表原始对应物的高分辨率和大尺寸图像。我们还讨论了模型的演变以及该算法在材料科学中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信