Calvin Krämer, Jan Alexander Koziol, Anja Langheld, Max Hörmann, Kai Phillip Schmidt
{"title":"Quantum-critical properties of the one- and two-dimensional random transverse-field Ising model from large-scale quantum Monte Carlo simulations","authors":"Calvin Krämer, Jan Alexander Koziol, Anja Langheld, Max Hörmann, Kai Phillip Schmidt","doi":"10.21468/scipostphys.17.2.061","DOIUrl":null,"url":null,"abstract":"We study the ferromagnetic transverse-field Ising model with quenched disorder at $T = 0$ in one and two dimensions by means of stochastic series expansion quantum Monte Carlo simulations using a rigorous zero-temperature scheme. Using a sample-replication method and averaged Binder ratios, we determine the critical shift and width exponents $\\nu_\\mathrm{s}$ and $\\nu_\\mathrm{w}$ as well as unbiased critical points by finite-size scaling. Further, scaling of the disorder-averaged magnetisation at the critical point is used to determine the order-parameter critical exponent $\\beta$ and the critical exponent $\\nu_{\\mathrm{av}}$ of the average correlation length. The dynamic scaling in the Griffiths phase is investigated by measuring the local susceptibility in the disordered phase and the dynamic exponent $z'$ is extracted. By applying various finite-size scaling protocols, we provide an extensive and comprehensive comparison between the different approaches on equal footing. The emphasis on effective zero-temperature simulations resolves several inconsistencies in existing literature.","PeriodicalId":21682,"journal":{"name":"SciPost Physics","volume":"33 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21468/scipostphys.17.2.061","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the ferromagnetic transverse-field Ising model with quenched disorder at $T = 0$ in one and two dimensions by means of stochastic series expansion quantum Monte Carlo simulations using a rigorous zero-temperature scheme. Using a sample-replication method and averaged Binder ratios, we determine the critical shift and width exponents $\nu_\mathrm{s}$ and $\nu_\mathrm{w}$ as well as unbiased critical points by finite-size scaling. Further, scaling of the disorder-averaged magnetisation at the critical point is used to determine the order-parameter critical exponent $\beta$ and the critical exponent $\nu_{\mathrm{av}}$ of the average correlation length. The dynamic scaling in the Griffiths phase is investigated by measuring the local susceptibility in the disordered phase and the dynamic exponent $z'$ is extracted. By applying various finite-size scaling protocols, we provide an extensive and comprehensive comparison between the different approaches on equal footing. The emphasis on effective zero-temperature simulations resolves several inconsistencies in existing literature.