Processability of K340 Cold Work Tool Steel by Directed Energy Deposition Technique

MS Kenevisi, PA Martelli, FS Gobber, D Ugues, S Biamino
{"title":"Processability of K340 Cold Work Tool Steel by Directed Energy Deposition Technique","authors":"MS Kenevisi, PA Martelli, FS Gobber, D Ugues, S Biamino","doi":"10.1088/1757-899x/1310/1/012021","DOIUrl":null,"url":null,"abstract":"Directed Energy Deposition (DED) is an additive manufacturing process which can be used to repair defected components, such as blanking dies made of K340 tool steel. In this work, double tracks of K340 steel were deposited using DED process to study the processability of the alloy, and the tracks were characterized by light optical microscopy (LOM), scanning electron microscopy (SEM) and microhardness test. The results showed that near full-dense deposits can be made. However, the thermal cycle imposed by the process alters the microstructure of the material. Further investigation is required to make it possible to achieve a more homogeneous microstructure.","PeriodicalId":14483,"journal":{"name":"IOP Conference Series: Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1757-899x/1310/1/012021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Directed Energy Deposition (DED) is an additive manufacturing process which can be used to repair defected components, such as blanking dies made of K340 tool steel. In this work, double tracks of K340 steel were deposited using DED process to study the processability of the alloy, and the tracks were characterized by light optical microscopy (LOM), scanning electron microscopy (SEM) and microhardness test. The results showed that near full-dense deposits can be made. However, the thermal cycle imposed by the process alters the microstructure of the material. Further investigation is required to make it possible to achieve a more homogeneous microstructure.
定向能沉积技术对 K340 冷作工具钢的可加工性
定向能沉积(DED)是一种增材制造工艺,可用于修复缺陷部件,如 K340 工具钢制成的冲裁模。在这项工作中,使用定向能沉积工艺沉积了 K340 钢的双轨道,以研究该合金的可加工性,并通过光学显微镜(LOM)、扫描电子显微镜(SEM)和显微硬度测试对轨道进行了表征。结果表明,可以形成接近全致密的沉积。然而,该工艺施加的热循环改变了材料的微观结构。要想获得更均匀的微观结构,还需要进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信