{"title":"Urban scaling of air pollutants in Israel","authors":"Or Yatzkan, Itzhak Omer, David Burg","doi":"10.1007/s10668-024-05337-3","DOIUrl":null,"url":null,"abstract":"<p>Cities have been shown to exhibit empirical scaling behavior where numerous variables of urban performance are allometric, like greenhouse gas emissions. Polluting emissions have negative environmental and health impacts. This paper will elucidate the empirical urban scaling of atmospheric emissions for the Israeli urban system. It has been shown that cities may be environmentally efficient with CO<sub>2</sub> emissions that seem to be sub-linear, so large cities are more “green”. However, other reports suggest a super-linear relationship with respect to population size, so the large cities are less “green”. We report here for the first time the results of the nonlinear allometric power-law properties of multiple air pollutants, expanding the analysis to include electricity consumption and atmospheric emissions of CO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, CO, NMVOC, PM<sub>10</sub>, PM<sub>2.5</sub>, Benzene and 1,3-Butadiene together in one study in the case of Israel. They show the recurring mathematical patterns of cities similar to those reported elsewhere. Electricity usage is super-linear. Pollutant emissions of these greenhouse gases tend to exhibit significant super-linear dynamics (β > 1), though NMVOC and Benzene were linear. These results were conserved when regressing against the urban vehicle fleet size. This evidence supports the hypothesis that large cities may be less “green”. Indeed, different urban characteristics such as geography, local climate and weather conditions, population density, may also affect the pollution levels of cities. Taken together these results give evidence to the effect of urban agglomerations on the environment.</p>","PeriodicalId":540,"journal":{"name":"Environment, Development and Sustainability","volume":"13 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment, Development and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10668-024-05337-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cities have been shown to exhibit empirical scaling behavior where numerous variables of urban performance are allometric, like greenhouse gas emissions. Polluting emissions have negative environmental and health impacts. This paper will elucidate the empirical urban scaling of atmospheric emissions for the Israeli urban system. It has been shown that cities may be environmentally efficient with CO2 emissions that seem to be sub-linear, so large cities are more “green”. However, other reports suggest a super-linear relationship with respect to population size, so the large cities are less “green”. We report here for the first time the results of the nonlinear allometric power-law properties of multiple air pollutants, expanding the analysis to include electricity consumption and atmospheric emissions of CO2, NOx, SO2, CO, NMVOC, PM10, PM2.5, Benzene and 1,3-Butadiene together in one study in the case of Israel. They show the recurring mathematical patterns of cities similar to those reported elsewhere. Electricity usage is super-linear. Pollutant emissions of these greenhouse gases tend to exhibit significant super-linear dynamics (β > 1), though NMVOC and Benzene were linear. These results were conserved when regressing against the urban vehicle fleet size. This evidence supports the hypothesis that large cities may be less “green”. Indeed, different urban characteristics such as geography, local climate and weather conditions, population density, may also affect the pollution levels of cities. Taken together these results give evidence to the effect of urban agglomerations on the environment.
期刊介绍:
Environment, Development and Sustainability is an international and multidisciplinary journal covering all aspects of the environmental impacts of socio-economic development. It is also concerned with the complex interactions which occur between development and environment, and its purpose is to seek ways and means for achieving sustainability in all human activities aimed at such development. The subject matter of the journal includes the following and related issues:
-mutual interactions among society, development and environment, and their implications for sustainable development
-technical, economic, ethical and philosophical aspects of sustainable development
-global sustainability - the obstacles and ways in which they could be overcome
-local and regional sustainability initiatives, their practical implementation, and relevance for use in a wider context
-development and application of indicators of sustainability
-development, verification, implementation and monitoring of policies for sustainable development
-sustainable use of land, water, energy and biological resources in development
-impacts of agriculture and forestry activities on soil and aquatic ecosystems and biodiversity
-effects of energy use and global climate change on development and sustainability
-impacts of population growth and human activities on food and other essential resources for development
-role of national and international agencies, and of international aid and trade arrangements in sustainable development
-social and cultural contexts of sustainable development
-role of education and public awareness in sustainable development
-role of political and economic instruments in sustainable development
-shortcomings of sustainable development and its alternatives.